Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • 2000 International Quantum Electronics Conference
  • Technical Digest Series (Optica Publishing Group, 2000),
  • paper QWD3

Electromagnetically induced transparency in a thin film

Not Accessible

Your library or personal account may give you access

Abstract

We have developed a formalism for rendering the (near)resonant interaction of two electromagnetic fields with an inhomogeneously broadened system consisting of three-level Λ-atoms confined in an ultra-thin cell of thickness 10µm or less. The peculiar features of this model stem from the fact that the free interaction time of atoms with two laser fields is solely determined by the wall-to-wall time of atomic flight. An unusual absorptive and dispersive properties of this system have been found. Thus, we show that the absorption spectrum of the probe field and the fluorescence signal from the upper atomic level contain two sub-Doppler dips. One of them is originated from the optical pumping (OP) [1] due to the leak of atomic population from the upper atomic level, while the other much narrower dip corresponds to the electromagnetically induced transparency (EIT) effect [2] established in the medium due to the coherent population trapping of the atoms. When the coupling field is tuned into the exact resonance with the corresponding atomic transition, the locations of the two dips on the frequency scale coincide, whereas in the case of nonzero detuning of the coupling field, the two dips are shifted from each other by the amount of this detuning. This is because the EIT is very sensitive to the Raman resonance condition, while the OP is most efficient in the vicinity of the resonance of the probe field with the atomic transition frequency.

© 2000 IEEE

PDF Article
More Like This
Coherent control of the polarization of optical pulses using electromagnetically induced transparency

D Fujishima, M Takeoka, and F Kannari
QThD26 International Quantum Electronics Conference (IQEC) 2000

Electromagnetically Induced Transparency in Doppler-Broadened Three-Level Systems with Resonant Standing Wave Drive

F. Silva, J. Mornpart, V. Ahufinger, and R. Corbalán
QThD4 International Quantum Electronics Conference (IQEC) 2000

Radio Frequency Field Manipulation of Electromagnetically Induced Transparency

D. McGloin, G.A. Turnbull, and M.H. Dunn
QMF2 International Quantum Electronics Conference (IQEC) 2000

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.