Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Chemical Species from Tritium-Breeding Compacts by Raman Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

The retention of tritium in reactor breeding compacts has been studied in these experiments at conditions simulating nuclear reactor accidents, and the experimental results have been used to determine New Production Reactor safety envelopes. The tritium-breeding compacts tested contain thousands of spherical particles within a carbonaceous matrix; each particle is fabricated as a kernel of lithium aluminate, enriched in 6Li for breeding tritium by (n,α) reaction, surrounded by consecutive shells of porous carbon, pyrolytic carbon, silicon carbide, and pyrolytic carbon to retain the tritium during breeding. The experiments demonstrated that in an accident with a sudden reactor temperature jump to 1300°C, more than 99% of the tritium would be retained within the compact for over 50 hours, which is ample time to bring such an accident under control. In these experiments, chemical species released from the compacts were measured by laser-Raman spectroscopy to enable design of chemical safety systems. Chemical species that were observed at intermediate temperatures, including H2O, H2, CO, and hydrocarbons, resulted from compact exposure to air, whereas species released at high temperatures, including HT and CO, originated within the particles. The Raman data identified the dominant tritiated species to be HT, at concentrations commensurate with measurements of total tritium using ion chambers and scintillation counter. These tests attained Raman detectability as low as 6.4 parts-per-million (ppm) for HT.

© 1994 Optical Society of America

PDF Article
More Like This
Predictions of chemical species via diode laser spectroscopy

Shin-Juh Chen, Joel A. Silver, Werner J. A. Dahm, and Nancy D. Piltch
FB3 Laser Applications to Chemical and Environmental Analysis (LACSEA) 2002

Species Identification and Conversion Measurements in a Carbon Tetrachloride Radio Frequency Plasma Using Coherent Raman Techniques

R. Rodriguez and F.V. Wells
WD.7 Laser Applications to Chemical Analysis (LACSEA) 1994

Raman Spectroscopy Measurements of Single Reacting Aerosol Microparticles

Scot D. Rassat and E. James Davis
ThA.4 Laser Applications to Chemical Analysis (LACSEA) 1994

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.