Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Plasmonic-Enhanced High Harmonic Generation from Bulk Silicon

Not Accessible

Your library or personal account may give you access

Abstract

The nanoscale localization of light aided by the plasmonic response of materials goes hand in hand with enhancing its oscillating electric field. In the vicinity of the antenna, the electric field of a nano-Joule laser pulse can become strong enough to convert the laser light into high order harmonics through an extremely nonlinear interaction with gas atoms that occupy the nanoscopic volume. However, previously reported plasmon-assisted high harmonics [1,2] are suspected to be fluorescence [3,4]. The problem seems to be (i) the small number of gas atoms that can occupy the nanoscopic volume and (ii) the low damage threshold of the plasmonic antennas [5]. Here we use monopole nano-plasmonic antennas to demonstrate plasmon-assisted high harmonic generation directly from the high-density crystalline substrate that hosts an array of antennas. Built on a silicon substrate, the low bandgap of silicon relative to the ionization potential of rare gas atoms allows harmonic emission at much lower intensities. Imaging the high harmonic radiation will allow nanometer and attosecond measurement of the plasmonic field, unveiling collective relaxation dynamics and field reshaping while opening a new path to XUV frequency combs.

© 2016 Optical Society of America

PDF Article
More Like This
High harmonic generation in solids driven by plasmonically enhanced near–fields

Kotaro Imasaka, Tomohiro Kaji, Tsutomu Shimura, and Satoshi Ashihara
30pCJ4 Optics and Photonics Japan (OPJ) 2018

High Harmonic Generation by Resonant Plasmon Field Enhancement

Seung-Woo Kim, Seungchul Kim, In-Yong Park, and Joonhee Choi
CThQ1 Conference on Lasers and Electro-Optics (CLEO:S&I) 2010

Linking high harmonics from gases and bulk solids

G. Vampa, T. J. Hammond, N. Thiré, B. E. Schmidt, F. Légaré, D. D. Klug, C. R. McDonald, T. Brabec, and P. B. Corkum
FTu1N.2 CLEO: QELS_Fundamental Science (CLEO:FS) 2016

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.