Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Single-beam squeezing in a Doppler broadened medium

Not Accessible

Your library or personal account may give you access

Abstract

We have generated squeezed states of light with a single pump beam propagating through Doppler broadened sodium vapor via forward four-wave mixing (FWM) with spatially degenerate pump and probe modes. The two probe-mode inputs are vacuum states at nondegenerate frequencies, which are transformed to squeezed vacuum by the FWM interaction. Compared with previous FWM configurations,1 this single-pass single-pump-beam configuration ensures maximal overlap of the four interacting beams, thus maximizing the squeezing nonlinearity and improving the overall efficiency. The transmitted pump has the wrong phase to act as the local oscillator for detecting the squeezed spectrum.1 Therefore, a cavity is used to filter out most of the transmitted pump intensity, and the squeezed vacuum is detected with another local oscillator using the standard dual-detector scheme. The residual pump beam provides a reference to monitor the phase between the pump and squeezed vacuum. The observed 0.8-dB reduction in the shot noise corresponds to an inferred 50% squeezing of the light at the exit of the vapor medium, which is in reasonable agreement with the theory given by Ho et al.2 A linearly polarized pump is found to give less squeezing than a circularly polarized pump, possibly due to optical pumping.

© 1988 Optical Society of America

PDF Article
More Like This
Squeezed state experiments in sodium vapor

Mari W. Maeda, Prem Kumar, and Jeffrey H. Shapiro
TUA4 OSA Annual Meeting (FIO) 1986

Nondegenerate four-wave mixing in a squeezed vacuum

Sunghyuck An and Murray Sargent
TUL7 OSA Annual Meeting (FIO) 1988

Strong Relative-Intensity Squeezing of Light from Four-Wave Mixing in Hot Rb Vapor

Paul D. Lett, Vincent Boyer, Alberto M. Marino, Colin F. McCormick, and Ennio Arimondo
CTuC3 Conference on Coherence and Quantum Optics (CQO) 2007

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.