Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Intracavity resonance fluorescence in the strong-coupling limit

Not Accessible

Your library or personal account may give you access

Abstract

The standard theory of resonance fluorescence is a weak-coupling theory.1 If n¯ is the mean photon number for the driving field, g is the atom field coupling constant, and γ is the Einstein A coefficient, formally the standard theory of resonance fluorescence assumes the limit n¯, g/ γ → 0, with the ratio of Rabi frequency to atomic linewidth 2n¯ng/γ finite. The limit g/γ → 0 allows the variation of the Rabi frequency 2ng across the photon number distribution of the driving field to be neglected. By placing the atom inside an optical cavity the ratio g/γ can be changed. In this paper we calculate spectra for intracavity resonance fluorescence in the strong-coupling limit g/γ ≫ 1, g/κ ≫ 1, where κ is the cavity linewidth. We consider a single two-level atom interacting on resonance with a single cavity mode driven by a resonant coherent field. The cavity subtends a small solid angle at the atom, so that the spontaneous emission into free-space modes is not negligible. We calculate the spectrum of the light transmitted by the cavity (the transmitted spectrum) and the spectrum of the light radiated by the atom into free space (the fluorescent spectrum). The transmitted and fluorescent spectra show fundamental differences from the (weak-coupling) spectrum of free-space resonance fluorescence.

© 1989 Optical Society of America

PDF Article
More Like This
Sub-natural Resonance Fluorescence Spectra

L.M. Narducci, G.-L. Oppo, P. Ru, J.R. Tredicce, and M.O. Scully
PD12 OSA Annual Meeting (FIO) 1989

Cross correlations between fluorescent and transmitted photons in single-atom cavity-enhanced absorption

Perry R. Rice, Xiaoyi Wang, and Howard J. Carmichael
MS9 OSA Annual Meeting (FIO) 1988

Nonclassical photon statistics in the transmission from a resonant cavity containing a single atom

P. R. Rice and H. J. Carmichael
TUA9 OSA Annual Meeting (FIO) 1986

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.