Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Excitons in Double Quantum Wells-beyond the single-subband limit

Not Accessible

Your library or personal account may give you access

Abstract

Calculations of the exciton binding energy in quantum well systems carried out in the single sub-band limit where only the lowest electron and hole states contribute to the exciton have been widely reported.(1,2) This limit is valid when the confined electron and hole energy levels in the well are widely separated in energy compared to the exciton binding energy. At the other extreme would be the case of a superlattice in which the electron and hole subband bandwidths are much larger than the exciton binding energy and the exciton would be made from a linear combination of a number of subband states.(3) In this paper we wish to treat an intermediate case, namely a double quantum well system consisting of two identical wells of width Lw separated by a barrier of width Lb. When Lb is large the two lowest lying states ( i.e. the first symmetric and anti-symmetric electron and hole states ) arc almost degenerate. This near-degeneracy is progressively lifted as the barrier thickness, decreases. This means that for thick barriers in order to correctly calculate the exciton binding energy one must account for the mixing caused by the Coulomb potential between the two pairs of states.

© 1989 Optical Society of America

PDF Article
More Like This
Ultrafast coherent dynamics of excitons of higher-order subbands in semiconductor quantum wells

S. Arlt, U. Siegner, F. Morier-Genoud, and U. Keller
RMD6 Radiative Processes and Dephasing in Semiconductors (RPDS) 1998

Optical Phonon-Assisted Tunneling in Double Quantum-Well Structures

D. Y. Oberli, Jagdeep Shah, T. C. Damen, R. F. Kopf, J. M. Kuo, and J. E. Henry
TRT111 Picosecond Electronics and Optoelectronics (UEO) 1989

Subband structure for narrow, coupled quantum wells

Mark L. Biermann and C. R. Stroud
WO3 OSA Annual Meeting (FIO) 1990

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.