Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Atmospheric visibility prediction by using the DBN deep learning model and principal component analysis

Not Accessible

Your library or personal account may give you access

Abstract

Measuring and predicting atmospheric visibility is important scientific research that has practical significance for urban air pollution control and public transport safety. We propose a deep learning model that uses principal component analysis and a deep belief network (DBN) to effectively predict atmospheric visibility in short- and long-term sequences. First, using a visibility meter, particle spectrometer, and ground meteorological station data from 2016 to 2019, the principal component analysis method was adopted to determine the influence of atmospheric meteorological and environmental parameters on atmospheric visibility, and an input dataset applicable to atmospheric visibility prediction was constructed. On the basis of deep belief network theory, network structure parameters, including data preprocessing, the number of hidden layers, the number of nodes, and activation and weight functions, are simulated and analyzed. A deep belief network model suitable for atmospheric visibility prediction is established, where a double hidden layer is adopted with the node numbers 70 and 50, and the Z-score method is used for normalization processing with the tanh activation function and Adam optimizer. The average accuracy of atmospheric visibility prediction by the deep belief network reached 0.84, and the coefficient of determination reached 0.96; these results are significantly superior to those of the back propagation (BP) neural network and convolutional neural network (CNN), thus verifying the feasibility and effectiveness of the established deep belief network for predicting atmospheric visibility. Finally, a deep belief network model based on time series is used to predict the short- and long-term trends of atmospheric visibility. The results show that the model has good visibility prediction results within 3 days and has an accuracy rate of 0.79. Covering the visibility change evaluations of different weather conditions, the model demonstrates good practicability. The established deep learning network model provides an effective and feasible technical solution for the prediction of atmospheric meteorology and environmental parameters, which enjoys a wide range of application prospects in highway transportation, navigation, sea and air, meteorology, and environmental research.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Single and composite disturbance event recognition based on the DBN-GRU network in φ-OTDR

Mingxuan Liu, Xin Wang, Sheng Liang, Xinzhi Sheng, and Shuqin Lou
Appl. Opt. 62(1) 133-141 (2023)

Classification of steel using laser-induced breakdown spectroscopy combined with deep belief network

Guanghui Chen, Qingdong Zeng, Wenxin Li, Xiangang Chen, Mengtian Yuan, Lin Liu, Honghua Ma, Boyun Wang, Yang Liu, Lianbo Guo, and Huaqing Yu
Opt. Express 30(6) 9428-9440 (2022)

Deep learning optical image denoising research based on principal component estimation

Qianbo Lu, Chengxiu Liu, Wenlu Feng, Qingxiong Xiao, and Xiaoxu Wang
Appl. Opt. 61(15) 4412-4420 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.