Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 42,
  • Issue 9,
  • pp. 3446-3453
  • (2024)

Optical Feedback FM-to-AM Conversion With Photonic Integrated Circuits for Displacement Sensing Applications

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, integrated silicon nitride edge filters are demonstrated to perform the function of frequency to amplitude (FM-to-AM) conversion of optical feedback interferometric (OFI) signals. Compared to existing OFI FM-to-AM conversion techniques employing optical edge filters based on gas cells, and free-space or fiber-based Mach Zehnder interferometers (MZIs), integrated photonic processing of OFI signals is found to offer greater compactness and design flexibility. In addition, higher resilience to parasitic mechanical vibrations and better temperature control of the photonic chip can potentially facilitate sensing system operation. Three different optical filters have been implemented to perform FM-to-AM conversion: two integrated MZIs with a 2- cm and 4- cm path-length imbalance, respectively, and one micro-ring resonator (MRR). The OFI FM-to-AM conversion factors are experimentally determined to be 0.37 GHz $^{-1}$ , 0.65 GHz $^{-1}$ and, 1 GHz $^{-1}$ for the 2- cm imbalanced MZI, the 4-cm imbalanced MZI and the MRR, respectively. The corresponding noise equivalent displacements (NEDs) with optical chip coupling are found to be approximately 25.4 nm, 11.5 nm and 4.9 nm, respectively, over a 1 kHz bandwidth. The results are compared to those obtained with a reference hydrogen cyanide gas cell exhibiting a sensitivity of approximately 0.25 GHz $^{-1}$ and an NED of 5.6 nm.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.