Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multiple attention mechanisms-driven component fault location in optical networks with network-wide monitoring data

Not Accessible

Your library or personal account may give you access

Abstract

Fault location is an essential part of optical network operation and maintenance, and network operators have expectations to achieve highly accurate and precise fault location for reducing the cost of fault recovery. However, due to the scale of such networks, the volume of monitoring data (MD) is quite large, which poses a great challenge for fault location. An attention mechanism is an effective way to focus on the important information from massive input for the current task, which originates from the study of human vision. Targeting component fault location in optical networks, we propose an attention mechanism-based strategy, which consists of a sequence attention mechanism (SAT), a channel attention mechanism (CAT), a graph attention mechanism (GAT), and a fully connected neural network (FCNN). SAT, CAT, and GAT are applied for link, node, and network representation, respectively, taking corresponding MD as input. The FCNN is responsible for analyzing the correlation between MD and completing the fault location decision. All three attention mechanisms can filter out the more critical MD, assisting the FCNN to make more accurate decisions. We compare the performance of the proposed strategy and artificial neural networks (ANNs) in partial telemetry scenarios. Simulation results indicate that our strategy outperforms ANNs with respect to the accuracy of fault location by focusing on more critical MD and achieves a maximum improvement by 5.6%. Moreover, its feasibility with real data is verified on an experimental testbed consisting of hybrid optical-electrical switching nodes. Extensive results show that our strategy has the potential to achieve highly accurate fault location in real networks.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Suspect fault screen assisted graph aggregation network for intra-/inter-node failure localization in ROADM-based optical networks

Ruikun Wang, Jiawei Zhang, Shuangyi Yan, Chuidian Zeng, Hao Yu, Zhiqun Gu, Bojun Zhang, Tarik Taleb, and Yuefeng Ji
J. Opt. Commun. Netw. 15(7) C88-C99 (2023)

Machine-learning-based soft-failure localization with partial software-defined networking telemetry

Kayol S. Mayer, Jonathan A. Soares, Rossano P. Pinto, Christian E. Rothenberg, Dalton S. Arantes, and Darli A. A. Mello
J. Opt. Commun. Netw. 13(10) E122-E131 (2021)

Confidentiality-preserving machine learning algorithms for soft-failure detection in optical communication networks

Moises Felipe Silva, Andrea Sgambelluri, Alessandro Pacini, Francesco Paolucci, Andre Green, David Mascarenas, and Luca Valcarenghi
J. Opt. Commun. Netw. 15(8) C212-C222 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.