Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet–visible diffuse reflectance spectra

Not Accessible

Your library or personal account may give you access

Abstract

A method for estimating the optical properties of two-layered media (such as squamous epithelial tissue) over a range of wavelengths in the ultraviolet–visible spectrum is proposed and tested with Monte Carlo modeling. The method first used a fiber-optic probe with angled illumination and the collection fibers placed at a small separation (300  μm) to restrict the transport of detected light to the top layer. A Monte Carlo-based inverse model for a homogeneous medium was employed to estimate the top layer optical properties from the measured diffuse reflectance spectrum. Then a flat-tip probe with a large source-detector separation (1000  μm) was used to detect diffuse reflectance preferentially from the bottom layer. A second Monte Carlo-based inverse model for a two-layered medium was applied to estimate the bottom layer optical properties, as well as the top layer thickness, given that the top layer optical properties have been estimated. The results of Monte Carlo validation show that this method works well for an epithelial tissue model with a top layer thickness ranging from 200  to 500  μm. For most thicknesses within this range, the absorption coefficients were estimated to within 15% of the true values, the reduced scattering coefficients were estimated to within 20% and the top layer thicknesses were estimated to within 20%. The application of a variance reduction technique to the Monte Carlo modeling proved to be effective in improving the accuracy with which the optical properties are estimated.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media

Quan Liu and Nirmala Ramanujam
J. Opt. Soc. Am. A 24(4) 1011-1025 (2007)

Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue

Quanzeng Wang, Karthik Shastri, and T. Joshua Pfefer
Appl. Opt. 49(28) 5309-5320 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved