Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Application of two-dimensional spectral surface plasmon resonance to imaging of pressure distribution in elastohydrodynamic lubricant films

Not Accessible

Your library or personal account may give you access

Abstract

What we believe to be a novel two-dimensional spectral surface plasmon resonance imaging technique determining pressure distribution in elastohydrodynamic lubricant films is presented. This technique makes use of the spectral characteristics associated with the surface plasmon resonance (SPR) effect, and it provides more spectral information in refractive index mapping than conventional contrast SPR imaging. Two-dimensional imaging is demonstrated and applied to a highly pressurized liquid lubricant trapped inside an elastohydrodynamic lubrication (EHL) dimple. The hydrostatic pressure inside the EHL dimple causes a localized change of the refractive index of the lubrication oil. This also results in a shift in the spectral SPR absorption dip. By monitoring the color changes within the SPR image and calibrating with lubricants of known refractive index profiles, we can obtain a direct measurement of the refractive index distribution within the EHL dimple. PB 2400 lubricant dimples were studied in our experiments. The proposed SPR imaging approach is irrespective of the absolute lubricant film thickness h, therefore overcoming the major limitations of a conventional optical interference technique. With further development of the two-dimensional refractive index mapping technique, widespread applications in various fields are possible, including high-throughput sensors and the detection of bioaffinity interactions.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Application of surface plasmon resonance sensing to studying elastohydrodynamic lubricant films

Chi Lok Wong, Ho Pui Ho, Kwok Sum Chan, and Shu Yuen Wu
Appl. Opt. 44(23) 4830-4837 (2005)

Characterization of high refractive index semiconductor films by surface plasmon resonance

Sergiy Patskovsky, Souleymane Bah, Michel Meunier, and Andrei V. Kabashin
Appl. Opt. 45(25) 6640-6645 (2006)

Determination of thin hydrodynamic lubricating film thickness using dichromatic interferometry

L. Guo, P. L. Wong, F. Guo, and H. C. Liu
Appl. Opt. 53(26) 6066-6072 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved