Abstract
Resonance domain diffractive optical elements for combining RGB laser beams into a single collimated beam were designed, fabricated, and experimentally investigated. The input RGB beams were angular separated up to tens of degrees and set in a nearly Bragg arrangement for high diffraction efficiency. A single resonance domain diffractive lens delivered beam combining and collimation functions with reasonable residue divergence. The resonance domain diffraction grating delivered diffraction-limited residue divergence in combining the collimated RGB beams. Optical experiments with fiber-coupled RGB lasers and e-beam-fabricated beam combiners proved low residue beam divergence, a high polarization extinction ratio, and total measured diffraction efficiency of about 80%.
© 2018 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (12)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (5)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (16)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription