Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantitative planar temperature imaging in turbulent non-premixed flames using filtered Rayleigh scattering

Abstract

The paper presents results demonstrating the application of filtered Rayleigh scattering (FRS) for quantitative temperature measurements within turbulent non-premixed jet flames. Through targeted fuel tailoring, i.e., the selection of a specific fuel mixture, temperature measurements are made under non-premixed fueling conditions with a single FRS measurement. For this to be feasible, the instantaneous measured FRS signal is uniquely proportional to the local temperature for all thermo-chemical states of the targeted fuel–oxidizer system. Simulated results using laminar, counterflow flame calculations show that for select CH4/H2/Ar fuel mixtures issuing into air, a unique relationship between the local FRS signal and temperature is achieved for all mixture fraction values over a full range of operating conditions from near-equilibrium to near-extinction flames. Furthermore, for the selected FRS-optimized fuel, the local mixture-averaged Rayleigh scattering cross section is nearly constant from fuel to oxidizer to products. Thus, traditional laser Rayleigh scattering (LRS) can be used to determine the temperature as a “standard” to which to compare and assess the FRS-based temperature results. Simultaneous LRS–FRS temperature measurements from Re=10,000, 20,000, and 30,000 turbulent non-premixed jet flames are presented that show good agreement between the two techniques in terms of instantaneous temperature fields and statistical quantities at various spatial locations within the flame. These results provide confidence that the current approach of FRS thermometry allows for accurate temperature measurements within the selected set of turbulent non-premixed flames.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantitative 2D thermometry in turbulent sooting non-premixed flames using filtered Rayleigh scattering

Jinpeng Pu and Jeffrey A. Sutton
Appl. Opt. 60(19) 5742-5751 (2021)

Temperature imaging in nonpremixed flames by joint filtered Rayleigh and Raman scattering

Sean P. Kearney, Robert W. Schefer, Steven J. Beresh, and Thomas W. Grasser
Appl. Opt. 44(9) 1548-1558 (2005)

Mixture fraction measurement in turbulent non-premixed MILD jet flame using Rayleigh scattering

Abinash Sahoo, Aravind Ramachandran, Venkateswaran Narayanaswamy, and Kevin M. Lyons
Appl. Opt. 61(9) 2338-2351 (2022)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved