Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Nitric oxide detection using principal component analysis spectral structure matching to the UV derivative spectrum

Not Accessible

Your library or personal account may give you access

Abstract

Ultraviolet (UV) spectroscopy is widely applied in real-time environmental monitoring, especially in diesel vehicle nitrogen monoxide (NO) emissions. However, in field experiments, UV absorption spectrum may exist for different degrees of drifts. Spectral jitters may exist for various reasons such as optical power variation, electrical signal drift, and the refractive index jitters of the optical path for an extended period of time, which causes the detection system to be calibrated. And the pulse xenon lamps as the UV source are characterized by specific emission lines that interfere in spectral analysis directly. For these problems, we proposed the spectral structure matching method based on principal component analysis (PCA), which was compared with the conventional polynomial fitting method to observe feasibility and variability. Further, the UV derivative spectrum was applied to the system appropriately, due to the variation of the absorption peak, and was only related to the target gas by using the above method. We validated our method experimentally by performing the NO UV detection system with the calibration and the comparison test. The results suggested that the calibration relative error was less than 9% and the measurement relative error was less than 6% for this wide range by the proposed processes, which optimized the interference of spectral structures and fluctuation to the system and therefore provided better monitoring. This study may provide an alternative spectral analysis method that is unaffected on the specific emission lines of lamps and is not limited to the spectral region and the target gas.

© 2021 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Adaptive monostable stochastic resonance for processing UV absorption spectrum of nitric oxide

Bo-Qiang Fan, Yu-Jun Zhang, Ying He, Kun You, Meng-Qi Li, Dong-Qi Yu, Hao Xie, and Bo-En Lei
Opt. Express 28(7) 9811-9822 (2020)

Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection

Yury A. Bakhirkin, Anatoliy A. Kosterev, Chad Roller, Robert F. Curl, and Frank K. Tittel
Appl. Opt. 43(11) 2257-2266 (2004)

High sensitive detection of nitric oxide using laser induced photoacoustic spectroscopy at 213 nm

Mohammed A. Gondal, Ahmed Asaad I. Khalil, and Noura Al-Suliman
Appl. Opt. 51(23) 5724-5734 (2012)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the author upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.