Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Double U-groove temperature and refractive index photonic crystal fiber sensor based on surface plasmon resonance

Not Accessible

Your library or personal account may give you access

Abstract

Based on double U-groove photonic crystal fiber (PCF), a surface plasmon resonance sensor with dual parametric detection of temperature and refractive index is proposed. The birefringence of PCF is increased by using germanium ions doped in the core and introducing U-shaped notches on both sides of the D-shaped fiber. The polished surface of the PCF is coated with gold film and PDMS as a temperature sensing channel, and the U-shaped groove is coated with gold film as a refractive index sensing channel. Through the design of the sensor, it is finally possible to achieve independent measurement of the two parameters. The sensor has a maximum wavelength sensitivity of 4715 nm/RIU in the analyte refractive index range of 1.32–1.4, and maximum wavelength sensitivity of 18 nm/°C in the ambient temperature range of ${-}{{30^\circ {\rm C} - 50^\circ{\rm C}}}$. The proposed sensor has broad application prospects in scenarios such as blood analysis, DNA hybridization analysis, and microenvironmental cell interactions.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Tunable liquid crystal core refractive index sensor based on surface plasmon resonance in gold nanofilm coated photonic crystal fiber

Zhenkai Fan, Shichao Chu, Jianye Qin, Yinping Zhang, and Haishan Liu
Appl. Opt. 61(10) 2675-2682 (2022)

Simulation study of a temperature-calibrated double-sided polished optical fiber SPR refractive index sensor

Wanqi Zhao, Min Xiong, Ming Chen, Yu Cheng, Shijie Deng, Houquan Liu, Chuanxin Teng, Hongyan Yang, Hongchang Deng, and Libo Yuan
Appl. Opt. 61(32) 9583-9589 (2022)

D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance

Guowen An, Xiaopeng Hao, Shuguang Li, Xin Yan, and Xuenan Zhang
Appl. Opt. 56(24) 6988-6992 (2017)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.