Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

MIM waveguide system with independently tunable double resonances and its application for two-parameter detection

Not Accessible

Your library or personal account may give you access

Abstract

A metal–insulator–metal (MIM) waveguide system consisting of a MIM waveguide, a ring cavity, and a semi-ring cavity is proposed. Using the finite element method, the transmission characteristics of the MIM waveguide system are discussed under the different geometry parameters. By detecting the resonance wavelength and varying the refractive index, the sensing performance of the MIM waveguide system is analyzed. The proposed structure can be used as a refractive index sensor with the maximum sensitivity of 2412 nm/RIU. Due to isolating the ring cavity and semi-ring cavity, the independent tuning of double resonances can be realized by changing the refractive index of the insulator in the ring cavity or the semi-ring cavity. Benefiting from two independent refractive index sensing modes, the structure with two isolated resonators can realize the simultaneous measurement of glucose solution concentration and blood plasma concentration. The sensitivity of glucose solution sensing in the ring cavity is 0.13133 nm/(g/L). Meanwhile, the blood plasma concentration detection in the semi-ring cavity is realized with the sensitivity of 0.358 nm/(g/L). The system with two isolated cavities has the potential to be used as an efficient nano sensor, which can achieve simultaneous measurement of two parameters.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Quadruple Fano resonances in MIM waveguide structure with ring cavities for multisolution concentration sensing

Yajie Liu, He Tian, Xinyi Zhang, Mingyu Wang, and Yu Hao
Appl. Opt. 61(35) 10548-10555 (2022)

Independently tunable triple Fano resonances based on MIM waveguide structure with a semi-ring cavity and its sensing characteristics

Xing Liu, Jina Li, Jianfeng Chen, Siti Rohimah, He Tian, and Jinfang Wang
Opt. Express 29(13) 20829-20838 (2021)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.