Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Near-perfect wide-band absorbers based on one-dimensional photonic crystal structures in 1–20 THz frequencies

Not Accessible

Your library or personal account may give you access

Abstract

This paper investigates the absorption behavior of one-dimensional (1D) photonic crystal (PhC) structures in the 1–20 THz region. The structures are analyzed by the transfer matrix method to achieve accurate results quickly with ordinary simulation facilities. The simulation results indicate a strong dependence of the absorber performance on the thickness and material of the PhC layers, as well as the frequency and angle of incident light. The combination of silica and titanium (Ti) materials as dielectric and metal layers presents a great choice for broadband high-absorption applications so that this structure can absorb, on average, more than 80% of the normal incident radiation in the studied frequency range. Additionally, this absorber has the lowest dependence on incident light with the angle varying from 0° to 80° compared to identical absorbers with silver, aluminum, gold, chromium, nickel, and tungsten metals. The excellent absorption feature of the Ti-based absorber compared to the other absorbers is attributed to the lower permittivity of Ti (in both real and imaginary parts) in comparison with the other metals. In addition to owning simple and fabrication-friendly structures, 1D PhCs can pave the way to achieve various absorption spectra proportional to the needs of photonics, communications, and aerospace applications.

© 2023 Optica Publishing Group

Full Article  |  PDF Article

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.