Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design of DWDM optical communication systems with different modulation formats using DCF and a repeater

Not Accessible

Your library or personal account may give you access

Abstract

The dense wavelength division multiplexing (DWDM) technique has been used to provide a large capacity and low bandwidth loss for optical communication systems. In this paper, simulation designs by Optisystem15.0 of carrier-suppressed return to zero (CSRZ), differential phase shift keying (DPSK), and intensity modulation is proposed to determine which modulation format is more compatible with four and eight DWDM channels for transmitting an optical signal over 400 km distance. For a long optical path, the dispersion compensation fiber (DCF) technique is proposed to eliminate dispersion effects and increase the possibility of transmitting multiple optical wavelengths over long single-mode fiber. Optical amplifiers are used to amplify the optical signal with a distorted signal and process the attenuation caused by the long transmission distance. In DCF network design, CSRZ offers the best performance because of the large quality factor (24.560) and high threshold power (15 dBm), which make the system compatible with increased distance between the transmitter and receiver; next is intensity modulation with a 24.5604 quality factor and 13 dBm threshold power value; DPSK comes in last with the worst performance, with a quality factor of 10 at 13 dBm power due to non-linear effects, especially non-linear phase noise. In the repeater design, the DPSK modulation format has the best performance with a large quality factor of 20.7913 at a high threshold power of 14 dBm for 150 GHz spacing; this is because the repeater technique is compatible with reducing the non-linear effects of the DPSK format. CSRZ and intensity modulation have the same performance with a 12 quality factor at 4 dBm power for intensity modulation and 3 dBm power for CSRZ modulation.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
5 × 5 Gbps DWDM optical system with DCF and cascaded repeaters techniques

Saif H. Abdulwahid and Haydar M. AL-Tamimi
Appl. Opt. 62(8) 2100-2108 (2023)

Unequal channel spacing 8×5 Gbps optical system utilizing different signal representations

Saif H. Abdulwahid and Salah Mahdi
Appl. Opt. 62(13) 3252-3259 (2023)

Analysis of a WDM system with a modified duobinary modulation scheme in an optical network using EDFA

Vidhya Janakiraman, Margarat Michael, and Elizabeth Caroline Britto
Appl. Opt. 62(12) 3118-3124 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (21)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.