Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Silicon-tapered waveguide for mode conversion in metal–insulator–metal waveguide-based plasmonic sensor for refractive index sensing

Not Accessible

Your library or personal account may give you access

Abstract

In this study, we have undertaken a comprehensive numerical investigation of a refractive index sensor designed around a metal–insulator–metal (MIM) plasmonic waveguide. Our approach utilizes the finite element method to thoroughly analyze the sensor’s performance. The sensor’s configuration utilizes a ring resonator design, which has been slightly modified at the coupling segment. This modification enhances the efficiency of light coupling between a bus waveguide and the ring resonator, particularly at the resonance wavelength. This strategic adjustment significantly improves the device’s extinction ratio, a critical factor in its functionality. Remarkably, the sensitivity of this sensor is determined to be approximately 1155.71 nm/RIU, while it possesses a figure of merit of 25.9. Furthermore, our study delves into the intricate mechanism governing the injection of light into the nanoscale MIM waveguide. We achieve this through the incorporation of silicon-tapered waveguides, which play a pivotal role in facilitating the transformation of a dielectric mode into a plasmonic mode, and vice versa. Ultimately, the findings of this research hold significant promise for advancing the field of plasmonic sensing systems based on MIM waveguide technology. The insights gained here pave the way for the practical realization and optimization of highly efficient and precise plasmonic sensors.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide

Dong-Jin Lee, Hae-Dong Yim, Seung-Gol Lee, and Beom-Hoan O
Opt. Express 19(21) 19895-19900 (2011)

Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating

Yun Binfeng, Hu Guohua, Zhang Ruohu, and Cui Yiping
Opt. Express 22(23) 28662-28670 (2014)

Multiple Fano resonance refractive index sensor based on a plasmonic metal-insulator-metal based Taiji resonator

Huibo Fan, Hongwei Fan, and Huili Fan
J. Opt. Soc. Am. B 39(1) 32-39 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.