Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical–electronic hybrid Fourier convolutional neural network based on super-pixel complex-valued modulation

Not Accessible

Your library or personal account may give you access

Abstract

An optical–electronic hybrid convolutional neural network (CNN) system is proposed and investigated for its parallel processing capability and system design robustness. It is regarded as a practical way to implement real-time optical computing. In this paper, we propose a complex-valued modulation method based on an amplitude-only liquid-crystal-on-silicon spatial light modulator and a fixed four-level diffractive optical element. A comparison of computational results of convolutions between different modulation methods in the Fourier plane shows the feasibility of the proposed complex-valued modulation method. A hybrid CNN model with one convolutional layer of multiple channels is proposed and trained electrically for different classification tasks. Our simulation results show that this model has a classification accuracy of 97.55% for MNIST, 88.81% for Fashion MNIST, and 56.16% for Cifar10, which outperforms models using only amplitude or phase modulation and is comparable to the ideal complex-valued modulation method.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
OP-FCNN: an optronic fully convolutional neural network for imaging through scattering media

Zicheng Huang, Ziyu Gu, Mengyang Shi, Yesheng Gao, and Xingzhao Liu
Opt. Express 32(1) 444-456 (2024)

Massively parallel amplitude-only Fourier neural network

Mario Miscuglio, Zibo Hu, Shurui Li, Jonathan K. George, Roberto Capanna, Hamed Dalir, Philippe M. Bardet, Puneet Gupta, and Volker J. Sorger
Optica 7(12) 1812-1819 (2020)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.