Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Output characteristics of distributed feedback 3.0 terahertz quantum cascade lasers

Not Accessible

Your library or personal account may give you access

Abstract

Distributed feedback quantum cascade lasers lased at 3.0 THz were prepared and their output performance was analyzed. The optimized grating parameters were obtained by theoretical analyses. Single-mode emission was obtained and a maximum output power of more than 166 mW at 15 K was achieved. The corresponding threshold current density was ${257}\;{{\rm A/cm}^2}$, and the side-mode suppression ratio was more than 15 dB. By changing the input voltage, the frequency was stable with a variation of less than 3 GHz. A beam with obviously fast and slow axis features was observed. Further improvement and the potential application of distributed feedback quantum cascade lasers are discussed.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Predictions of resonant mode characteristics for terahertz quantum cascade lasers with distributed feedback utilizing machine learning

Ping Tang, Xiaomei Chi, Bo Chen, and Chongzhao Wu
Opt. Express 29(10) 15309-15326 (2021)

Dual-mode distributed feedback quantum cascade laser based on stacked 3D monolithic integration for on-chip multi-channel gas sensing

Xiyu Lu, Yanjiao Guan, Pengchang Yang, Shan Niu, Yu Ma, Lijun Wang, Ning Zhuo, Jinchuan Zhang, Shenqiang Zhai, Fengmin Cheng, Shuman Liu, Fengqi Liu, and Junqi Liu
Photon. Res. 11(12) 2113-2120 (2023)

Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides

Sushil Kumar, Benjamin S. Williams, Qi Qin, AlanW. M. Lee, Qing Hu, and John L. Reno
Opt. Express 15(1) 113-128 (2007)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.