Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

NiO thickness measurement using a rectangular-type Sagnac interferometer as the material transport layer in a perovskite solar cell

Not Accessible

Your library or personal account may give you access

Abstract

This work aims to utilize a phase-shifting technique in a rectangular-type Sagnac interferometer (RTSI) to measure the thickness of a thin film of nickel (II) oxide (NiO) in an electron transport layer (ETL) in perovskite solar cell preparation. The NiO layer is deposited on a fluorine-doped tin oxide (FTO) glass substrate. In the RTSI setup, the signal output from the interferometer is divided into the reference and testing arms using a nonpolarizing beam splitter (NPBS). The balanced photodetectors then detect the signal, with the FTO/NiO layer placed in the testing arm and pure FTO in the reference arm. By analyzing the signal intensities at polarization settings of 0° to 180°, the phase shift and thickness of the NiO layer can be determined. The thickness values of FTO and NiO films obtained through three different phase-shifting algorithms of three-, four-, and five-steps are calculated. The obtained NiO thickness values are validated against scanning electron microscopy (SEM). Finally, by considering the NiO thickness value that exhibits the lowest percentage error compared to one from SEM, it is confirmed that the three-step algorithm is the most suitable scheme for obtaining intensities at 0°, 45°, and 90°. Therefore, the proposed setup shows promise as a replacement for SEM in thickness measurements.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Phase-shifting determination and pattern recognition using a modified Sagnac interferometer with multiple reflections

Abdullahi Usman, Apichai Bhatranand, Yuttapong Jiraraksopakun, Khalid Sabo Muhammad, and Prathan Buranasiri
Appl. Opt. 63(4) 1135-1143 (2024)

Utilizing rubidium chloride as an effective and stable interface modification layer for high-efficiency solar cells

Liwen Hu, Weidi Shi, Guolong Li, Yifan Yang, and Jing Nie
Appl. Opt. 63(7) 1702-1709 (2024)

p-type Li, Cu-codoped NiOx hole-transporting layer for efficient planar perovskite solar cells

Ming-Hua Liu, Zheng-Ji Zhou, Pan-Pan Zhang, Qing-Wen Tian, Wen-Hui Zhou, Dong-Xing Kou, and Si-Xin Wu
Opt. Express 24(22) A1349-A1359 (2016)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.