Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Adaptive phase retrieval algorithm for local highlight area based on a piecewise sine function

Not Accessible

Your library or personal account may give you access

Abstract

Phase measuring profilometry (PMP) has been widely used in industries for three-dimensional (3D) shape measurement. However, phase information is often lost due to image saturation results from high-reflection object surfaces, leading to subsequent 3D reconstruction errors. To address the problem, we propose an adaptive phase retrieval algorithm that can accurately fit the sinusoidal fringes damaged by high reflection in the saturated regions to retrieve the lost phase information. Under the proposal, saturated regions are first identified through a minimum error thresholding technique to narrow down regions of interest and so that computation costs are reduced. Then, images with differing exposures are fused to locate peak-valley coordinates of the fitting sinusoidal fringes. And the corresponding values of peak-valley pixels are obtained based on a least squares method. Finally, an adaptive piecewise sine function is constructed to recover the sinusoidal fringe pattern by fitting the pattern intensity distribution. And the existing PMP technology is used to obtain phase information from the retrieved sinusoidal fringes. To apply the developed method, only one (or two) image with different exposure times is needed. Compared with existing methods for measuring reflective objects, the proposed method has the advantages of short operation time, reduced system complexity, and low demand on hardware equipment. The effectiveness of the proposed method is verified through two experiments. The developed methodology provides industry an alternative way to measure high-reflection objects in a wide range of applications.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Object phase-valid region segmentation method for FPP-based three-dimensional measurement

Yang Zou, Qingwu Li, Dabing Yu, Zheng Gao, and Suyang Chen
Appl. Opt. 63(12) 3079-3091 (2024)

Phase retrieval from single-shot square wave fringe based on image denoising using deep learning

Xiao Zhang, Peng Cheng, ZhiSheng You, and Di You
Appl. Opt. 63(4) 1160-1169 (2024)

Robust structured light 3D measurement method based on polarization-encoded projection patterns

Zhenmin Zhu, Yumeng Zhou, Wenquan Lu, Jing Zhang, Lisheng Zhou, and Haoran Liu
Appl. Opt. 63(1) 210-220 (2024)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (27)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.