Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Integrated photonics on thin-film lithium niobate

Open Access Open Access

Abstract

Lithium niobate (LN), an outstanding and versatile material, has influenced our daily life for decades—from enabling high-speed optical communications that form the backbone of the Internet to realizing radio-frequency filtering used in our cell phones. This half-century-old material is currently embracing a revolution in thin-film LN integrated photonics. The successes of manufacturing wafer-scale, high-quality thin films of LN-on-insulator (LNOI) and breakthroughs in nanofabrication techniques have made high-performance integrated nanophotonic components possible. With rapid development in the past few years, some of these thin-film LN devices, such as optical modulators and nonlinear wavelength converters, have already outperformed their legacy counterparts realized in bulk LN crystals. Furthermore, the nanophotonic integration has enabled ultra-low-loss resonators in LN, which has unlocked many novel applications such as optical frequency combs and quantum transducers. In this review, we cover—from basic principles to the state of the art—the diverse aspects of integrated thin-film LN photonics, including the materials, basic passive components, and various active devices based on electro-optics, all-optical nonlinearities, and acousto-optics. We also identify challenges that this platform is currently facing and point out future opportunities. The field of integrated LNOI photonics is advancing rapidly and poised to make critical impacts on a broad range of applications in communication, signal processing, and quantum information.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Integrated lithium niobate electro-optic modulators: when performance meets scalability

Mian Zhang, Cheng Wang, Prashanta Kharel, Di Zhu, and Marko Lončar
Optica 8(5) 652-667 (2021)

Advances in on-chip photonic devices based on lithium niobate on insulator

Jintian Lin, Fang Bo, Ya Cheng, and Jingjun Xu
Photon. Res. 8(12) 1910-1936 (2020)

Integrated microwave photonic filters

Yang Liu, Amol Choudhary, David Marpaung, and Benjamin J. Eggleton
Adv. Opt. Photon. 12(2) 485-555 (2020)

References

  • View by:

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
    [Crossref]
  2. M. Smit, K. Williams, and J. van der Tol, “Past, present, and future of InP-based photonic integration,” APL Photon. 4, 050901 (2019).
    [Crossref]
  3. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  4. J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
    [Crossref]
  5. C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
    [Crossref]
  6. T.-J. Lu, M. Fanto, H. Choi, P. Thomas, J. Steidle, S. Mouradian, W. Kong, D. Zhu, H. Moon, K. Berggren, J. Kim, M. Soltani, S. Preble, and D. Englund, “Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum,” Opt. Express 26, 11147–11160 (2018).
    [Crossref]
  7. D. M. Lukin, C. Dory, M. A. Guidry, K. Y. Yang, S. D. Mishra, R. Trivedi, M. Radulaski, S. Sun, D. Vercruysse, G. H. Ahn, and J. Vučković, “4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics,” Nat. Photonics 14, 330–334 (2020).
    [Crossref]
  8. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73, 2293–2295 (1998).
    [Crossref]
  9. M. Levy and R. M. Osgood, “Crystal ion-slicing of single-crystal films,” USPTO patent6120597 (September19, 2000).
  10. P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603–4605 (2004).
    [Crossref]
  11. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
    [Crossref]
  12. R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness,” Nanomaterials (Basel) 8, 910 (2018).
    [Crossref]
  13. R. Wolf, I. Breunig, H. Zappe, and K. Buse, “Scattering-loss reduction of ridge waveguides by sidewall polishing,” Opt. Express 26, 19815–19820 (2018).
    [Crossref]
  14. T. Ding, Y. Zheng, and X. Chen, “On-chip Solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator (PPLNOI) ridge waveguide,” J. Lightwave Technol. 37, 1296–1300 (2019).
    [Crossref]
  15. B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Lončar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6, 380–384 (2019).
    [Crossref]
  16. M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, and X. Cai, “High-performance coherent optical modulators based on thin-film lithium niobate platform,” Nat. Commun. 11, 3911 (2020).
    [Crossref]
  17. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
    [Crossref]
  18. A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24, 29941–29947 (2016).
    [Crossref]
  19. S. Y. Siew, E. J. H. Cheung, H. Liang, A. Bettiol, N. Toyoda, B. Alshehri, E. Dogheche, and A. J. Danner, “Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening,” Opt. Express 26, 4421–4430 (2018).
    [Crossref]
  20. A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24, 15590–15595 (2016).
    [Crossref]
  21. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
    [Crossref]
  22. M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
    [Crossref]
  23. P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Express 26, 23728–23739 (2018).
    [Crossref]
  24. A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26, 14810–14816 (2018).
    [Crossref]
  25. A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41, 5700–5703 (2016).
    [Crossref]
  26. M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
    [Crossref]
  27. Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “Self-starting bi-chromatic LiNbO3 soliton microcomb,” Optica 6, 1138–1144 (2019).
    [Crossref]
  28. C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10, 978 (2019).
    [Crossref]
  29. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
    [Crossref]
  30. J.-Y. Chen, Z.-H. Ma, Y. M. Sua, Z. Li, C. Tang, and Y.-P. Huang, “Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings,” Optica 6, 1244–1245 (2019).
    [Crossref]
  31. J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W,” Optica 6, 1455–1460 (2019).
    [Crossref]
  32. J.-Y. Chen, Y. M. Sua, Z.-H. Ma, C. Tang, Z. Li, and Y.-P. Huang, “Efficient parametric frequency conversion in lithium niobate nanophotonic chips,” OSA Continuum 2, 2914–2924 (2019).
    [Crossref]
  33. B. S. Elkus, K. Abdelsalam, A. Rao, V. Velev, S. Fathpour, P. Kumar, and G. S. Kanter, “Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides,” Opt. Express 27, 38521–38531 (2019).
    [Crossref]
  34. J. Zhao, C. Ma, M. Rüsing, and S. Mookherjea, “High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides,” Phys. Rev. Lett. 124, 163603 (2020).
    [Crossref]
  35. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
    [Crossref]
  36. M. Bazzan and C. Sada, “Optical waveguides in lithium niobate: recent developments and applications,” Appl. Phys. Rev. 2, 040603 (2015).
    [Crossref]
  37. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 12, 1700256 (2018).
    [Crossref]
  38. M. Sumets, Thin Films of Lithium Niobate: Potential Applications, Synthesis Methods, Structure and Properties (IOP Publishing, 2018).
  39. M. Rüsing, P. O. Weigel, J. Zhao, and S. Mookherjea, “Towards 3D integrated photonics including lithium niobate thin films,” IEEE Nanotechnol. Mag. 13(4), 18–33 (2019).
    [Crossref]
  40. Y. Qi and Y. Li, “Integrated lithium niobate photonics,” Nanophotonics 9, 1287–1320 (2020).
    [Crossref]
  41. A. Honardoost, K. Abdelsalam, and S. Fathpour, “Rejuvenating a versatile photonic material: thin-film lithium niobate,” Laser Photon. Rev. 14, 2000088 (2020).
    [Crossref]
  42. C. Wang, M. Zhang, and M. Lončar, “High-Q lithium niobate microcavities and their applications,” in Ultra-High-Q Optical Microcavities (World Scientific, 2020).
  43. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
    [Crossref]
  44. “Polarization reversal and ferroelectric domains in LiNbO3 crystals,” in Lithium Niobate, Springer Series in Materials Science (Springer, 2008), pp. 153–212.
  45. V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res. 37, 449–489 (2007).
    [Crossref]
  46. L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
    [Crossref]
  47. S. T. Popescu, A. Petris, and V. I. Vlad, “Interferometric measurement of the pyroelectric coefficient in lithium niobate,” J. Appl. Phys. 113, 043101 (2013).
    [Crossref]
  48. Y. Sakashita and H. Segawa, “Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition,” J. Appl. Phys. 77, 5995–5999 (1995).
    [Crossref]
  49. X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-Viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90, 5274–5277 (2001).
    [Crossref]
  50. Y. Nakata, S. Gunji, T. Okada, and M. Maeda, “Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties,” Appl. Phys. A 79, 1279–1282 (2004).
    [Crossref]
  51. J. Yoon and K. Kim, “Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process,” Appl. Phys. Lett. 68, 2523–2525 (1996).
    [Crossref]
  52. F. Gitmans, Z. Sitar, and P. Günter, “Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy,” Vacuum 46, 939–942 (1995).
    [Crossref]
  53. M. Bruel, “Silicon on insulator material technology,” Electron. Lett. 31, 1201–1202 (1995).
    [Crossref]
  54. M. Levy and A. M. Radojevic, “Single-crystal lithium niobate films by crystal ion slicing,” in Wafer Bonding, Springer Series in Materials Science (Springer, 2004), pp. 417–450.
  55. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
    [Crossref]
  56. H. Hu, R. Ricken, and W. Sohler, “Large area, crystal-bonded LiNbO3 thin films and ridge waveguides of high refractive index contrast,” in Proc. Topical Meeting “Photorefractive Materials, Effects, and Devices-Control of Light and Matter”(PR09), Bad Honnef, Germany (2009).
  57. H. Hu, L. Gui, R. Ricken, and W. Sohler, “Towards nonlinear photonic wires in lithium niobate,” Proc. SPIE 7604, 76040R (2010).
    [Crossref]
  58. F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
    [Crossref]
  59. J. Lv, Y. Cheng, W. Yuan, X. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5, 1274–1280 (2015).
    [Crossref]
  60. M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24, 1386–1391 (2016).
    [Crossref]
  61. G. Ulliac, B. Guichardaz, J.-Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88, 2417–2419 (2011).
    [Crossref]
  62. N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D 44, 305101 (2011).
    [Crossref]
  63. R. Takigawa, E. Higurashi, T. Kawanishi, and T. Asano, “Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method,” Opt. Express 22, 27733–27738 (2014).
    [Crossref]
  64. J. Lin, J. Zhou, R. Wu, M. Wang, Z. Fang, W. Chu, J. Zhang, L. Qiao, and Y. Cheng, “High-precision propagation-loss measurement of single-mode optical waveguides on lithium niobate on insulator,” Micromachines (Basel) 10, 612 (2019).
    [Crossref]
  65. M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator,” Quantum Eng. 1, e9 (2019).
    [Crossref]
  66. R. Wu, J. Lin, M. Wang, Z. Fang, W. Chu, J. Zhang, J. Zhou, and Y. Cheng, “Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanical polish,” Opt. Lett. 44, 4698–4701 (2019).
    [Crossref]
  67. J.-X. Zhou, R.-H. Gao, J. Lin, M. Wang, W. Chu, W.-B. Li, D.-F. Yin, L. Deng, Z.-W. Fang, J.-H. Zhang, R.-B. Wu, and Y. Cheng, “Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching,” Chin. Phys. Lett. 37, 084201 (2020).
    [Crossref]
  68. H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett. 19, 417–419 (2007).
    [Crossref]
  69. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
    [Crossref]
  70. R. Geiss, J. Brandt, H. Hartung, A. Tünnermann, T. Pertsch, E.-B. Kley, and F. Schrempel, “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching,” J. Vac. Sci. Technol. B 33, 010601 (2015).
    [Crossref]
  71. L. Cai, Y. Wang, and H. Hu, “Low-loss waveguides in a single-crystal lithium niobate thin film,” Opt. Lett. 40, 3013–3016 (2015).
    [Crossref]
  72. L. Cai, Y. Kang, and H. Hu, “Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film,” Opt. Express 24, 4640–4647 (2016).
    [Crossref]
  73. L. Cai, R. Kong, Y. Wang, and H. Hu, “Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film,” Opt. Express 23, 29211–29221 (2015).
    [Crossref]
  74. S.-M. Zhang, Y.-P. Jiang, and Y. Jiao, “Clean waveguides in lithium niobate thin film formed by He ion implantation,” Appl. Phys. B 123, 220 (2017).
    [Crossref]
  75. M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
    [Crossref]
  76. M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Lončar, “Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides,” Opt. Lett. 44, 1222–1225 (2019).
    [Crossref]
  77. H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24, 1012–1015 (2006).
    [Crossref]
  78. H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Cryst. Growth 187, 573–576 (1998).
    [Crossref]
  79. Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
    [Crossref]
  80. D. Jun, J. Wei, C. E. Png, S. Guangyuan, J. Son, H. Yang, and A. J. Danner, “Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas,” J. Vac. Sci. Technol. B 30, 011208 (2012).
    [Crossref]
  81. G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29, 021205 (2011).
    [Crossref]
  82. F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
    [Crossref]
  83. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
    [Crossref]
  84. E. Saitoh, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “A design method of lithium niobate on insulator ridge waveguides without leakage loss,” Opt. Express 19, 15833–15842 (2011).
    [Crossref]
  85. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
    [Crossref]
  86. I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26, 897–904 (2018).
    [Crossref]
  87. L. Cai, A. Mahmoud, and G. Piazza, “Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications,” Opt. Express 27, 9794–9802 (2019).
    [Crossref]
  88. J. Ling, Y. He, R. Luo, M. Li, H. Liang, and Q. Lin, “Athermal lithium niobate microresonator,” Opt. Express 28, 21682–21691 (2020).
    [Crossref]
  89. G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
    [Crossref]
  90. H. Hui, R. Ricken, and W. Sohler, “Etching of lithium niobate: from ridge waveguides to photonic crystal structures,” in ECIO, Eindhoven, The Netherlands (2008).
  91. L. Gui, H. Hu, M. Garcia-Granda, and W. Sohler, “Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation,” Opt. Express 17, 3923–3928 (2009).
    [Crossref]
  92. P. Ferraro, S. Grilli, and P. D. Natale, eds., Ferroelectric Crystals for Photonic Applications: Including Nanoscale Fabrication and Characterization Techniques (Springer, 2009).
  93. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
    [Crossref]
  94. R. Wolf, I. Breunig, H. Zappe, and K. Buse, “Cascaded second-order optical nonlinearities in on-chip micro rings,” Opt. Express 25, 29927–29933 (2017).
    [Crossref]
  95. D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014).
    [Crossref]
  96. S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photon. Technol. Lett. 28, 736–739 (2015).
    [Crossref]
  97. A. Rao and S. Fathpour, “Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics,” IEEE J. Sel. Top. Quantum Electron. 24, 8200912 (2018).
    [Crossref]
  98. A. N. R. Ahmed, S. Shi, M. Zablocki, P. Yao, and D. W. Prather, “Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator,” Opt. Lett. 44, 618–621 (2019).
    [Crossref]
  99. K. K. Mehta, G. N. West, and R. J. Ram, “SiN-on-LiNbO3 integrated optical modulation at visible,” in Conference on Lasers and Electro-Optics (OSA, 2017).
  100. S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23, 24212–24219 (2015).
    [Crossref]
  101. T. Jin, J. Zhou, and P. T. Lin, “Mid-infrared electro-optical modulation using monolithically integrated titanium dioxide on lithium niobate optical waveguides,” Sci. Rep. 9, 15130 (2019).
    [Crossref]
  102. A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23, 22746–22752 (2015).
    [Crossref]
  103. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
    [Crossref]
  104. Y. Wang, Z. Chen, L. Cai, Y. Jiang, H. Zhu, and H. Hu, “Amorphous silicon-lithium niobate thin film strip-loaded waveguides,” Opt. Mater. Express 7, 4018–4028 (2017).
    [Crossref]
  105. L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
    [Crossref]
  106. Z. Yu, X. Xi, J. Ma, H. K. Tsang, C.-L. Zou, and X. Sun, “Photonic integrated circuits with bound states in the continuum,” Optica 6, 1342–1348 (2019).
    [Crossref]
  107. Z. Yu, Y. Tong, H. K. Tsang, and X. Sun, “High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum,” Nat. Commun. 11, 2602 (2020).
    [Crossref]
  108. C.-L. Zou, J.-M. Cui, F.-W. Sun, X. Xiong, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators,” Laser Photon. Rev. 9, 114–119 (2015).
    [Crossref]
  109. L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express 20, 4032–4038 (2012).
    [Crossref]
  110. L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42, 803–806 (2017).
    [Crossref]
  111. Y. S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, W.-G. Lee, and W. H. Steier, “Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices,” Opt. Lett. 36, 1119–1121 (2011).
    [Crossref]
  112. L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21, 27003–27010 (2013).
    [Crossref]
  113. L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
    [Crossref]
  114. J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
    [Crossref]
  115. S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photon. Technol. Lett. 28, 736–739 (2016).
    [Crossref]
  116. M. Jin, J.-Y. Chen, Y. M. Sua, and Y.-P. Huang, “High-extinction electro-optic modulation on lithium niobate thin film,” Opt. Lett. 44, 1265–1268 (2019).
    [Crossref]
  117. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
    [Crossref]
  118. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17, 24261–24268 (2009).
    [Crossref]
  119. L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, and M. Loncar, “Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits,” Opt. Lett. 44, 2314–2317 (2019).
    [Crossref]
  120. I. Krasnokutska, R. J. Chapman, J.-L. J. Tambasco, and A. Peruzzo, “High coupling efficiency grating couplers on lithium niobate on insulator,” Opt. Express 27, 17681–17685 (2019).
    [Crossref]
  121. J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26, 29651–29658 (2018).
    [Crossref]
  122. G. Qian, L. Huang, F. Zhou, J. Tang, X. Chen, Y. Kong, and T. Chen, “Design and fabrication of cantilevered fiber-to-waveguide mode size converter for thin-film lithium niobate photonic integrated circuits,” Proc. SPIE 11455, 1145587 (2020).
    [Crossref]
  123. N. Yao, J. Zhou, R. Gao, J. Lin, M. Wang, Y. Cheng, W. Fang, and L. Tong, “Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber,” Opt. Express 28, 12416–12423 (2020).
    [Crossref]
  124. Y. Li, T. Lan, J. Li, and Z. Wang, “High-efficiency edge-coupling based on lithium niobate on an insulator wire waveguide,” Appl. Opt. 59, 6694–6701 (2020).
    [Crossref]
  125. I. Krasnokutska, J.-L. J. Tambasco, and A. Peruzzo, “Nanostructuring of LNOI for efficient edge coupling,” Opt. Express 27, 16578–16585 (2019).
    [Crossref]
  126. Y. Pan, S. Sun, M. Xu, M. He, S. Yu, and X. Cai, “Low fiber-to-fiber loss, large bandwidth and low drive voltage lithium niobate on insulator modulators,” in Conference on Lasers and Electro-Optics (OSA, 2020).
  127. C. Hu, A. Pan, T. Li, X. Wang, Y. Liu, S. Tao, C. Zeng, and J. Xia, “High-efficient and polarization independent edge coupler for thin-film lithium niobite waveguide devices,” arXiv:2009.02855 (2020).
  128. Z. Chen, R. Peng, Y. Wang, H. Zhu, and H. Hu, “Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector,” Opt. Mater. Express 7, 4010–4017 (2017).
    [Crossref]
  129. Z. Chen, Y. Wang, Y. Jiang, R. Kong, and H. Hu, “Grating coupler on single-crystal lithium niobate thin film,” Opt. Mater. 72, 136–139 (2017).
    [Crossref]
  130. A. Kar, M. Bahadori, S. Gong, and L. L. Goddard, “Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate,” Opt. Express 27, 15856–15867 (2019).
    [Crossref]
  131. M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photon. J. 9, 6600208 (2017).
    [Crossref]
  132. M. A. Baghban, J. Schollhammer, C. Errando-Herranz, K. B. Gylfason, and K. Gallo, “Bragg gratings in thin-film LiNbO3 waveguides,” Opt. Express 25, 32323–32332 (2017).
    [Crossref]
  133. S. Wang, L. Yang, R. Cheng, Y. Xu, M. Shen, R. L. Cone, C. W. Thiel, and H. X. Tang, “Incorporation of erbium ions into thin-film lithium niobate integrated photonics,” Appl. Phys. Lett. 116, 151103 (2020).
    [Crossref]
  134. T. G. Tiecke, K. P. Nayak, J. D. Thompson, T. Peyronel, N. P. de Leon, V. Vuletić, and M. D. Lukin, “Efficient fiber-optical interface for nanophotonic devices,” Optica 2, 70–75 (2015).
    [Crossref]
  135. S. Khan, S. M. Buckley, J. Chiles, R. P. Mirin, S. W. Nam, and J. M. Shainline, “Low-loss, high-bandwidth fiber-to-chip coupling using capped adiabatic tapered fibers,” APL Photon. 5, 056101 (2020).
    [Crossref]
  136. Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,” Opt. Lett. 39, 5348–5350 (2014).
    [Crossref]
  137. X. Yin, J. Jin, M. Soljačić, C. Peng, and B. Zhen, “Observation of topologically enabled unidirectional guided resonances,” Nature 580, 467–471 (2020).
    [Crossref]
  138. J. C. C. Mak, W. D. Sacher, H. Ying, X. Luo, P. G.-Q. Lo, and J. K. S. Poon, “Multi-layer silicon nitride-on-silicon polarization-independent grating couplers,” Opt. Express 26, 30623–30633 (2018).
    [Crossref]
  139. R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, and P. Minzioni, “Coupling strategies for silicon photonics integrated chips,” Photon. Res. 7, 201–239 (2019).
    [Crossref]
  140. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
    [Crossref]
  141. H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4, 1251–1258 (2017).
    [Crossref]
  142. M. Li, H. Liang, R. Luo, Y. He, and Q. Lin, “High-Q 2D lithium niobate photonic crystal slab nanoresonators,” Laser Photon. Rev. 13, 1800228 (2019).
    [Crossref]
  143. L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y.-F. Xiao, “High-Q chaotic lithium niobate microdisk cavity,” Opt. Lett. 43, 2917–2920 (2018).
    [Crossref]
  144. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
    [Crossref]
  145. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
    [Crossref]
  146. J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
    [Crossref]
  147. M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
    [Crossref]
  148. Z. Fang, Y. Xu, M. Wang, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “Monolithic integration of a lithium niobate microresonator with a free-standing waveguide using femtosecond laser assisted ion beam writing,” Sci. Rep. 7, 45610 (2017).
    [Crossref]
  149. S. Liu, Y. Zheng, and X. Chen, “Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk,” Opt. Lett. 42, 3626–3629 (2017).
    [Crossref]
  150. J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, and Y. Cheng, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
    [Crossref]
  151. X. Ye, S. Liu, Y. Chen, Y. Zheng, and X. Chen, “Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching,” Opt. Lett. 45, 523–526 (2020).
    [Crossref]
  152. R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43, 4116–4119 (2018).
    [Crossref]
  153. Z. Fang, S. Haque, J. Lin, R. Wu, J. Zhang, M. Wang, J. Zhou, M. Rafa, T. Lu, and Y. Cheng, “Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator,” Opt. Lett. 44, 1214–1217 (2019).
    [Crossref]
  154. J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials (Basel) 9, 1218 (2019).
    [Crossref]
  155. T.-J. Wang, J.-Y. He, C.-A. Lee, and H. Niu, “High-quality LiNbO3 microdisk resonators by undercut etching and surface tension reshaping,” Opt. Express 20, 28119–28124 (2012).
    [Crossref]
  156. L. Zhang, D. Zheng, W. Li, F. Bo, F. Gao, Y. Kong, G. Zhang, and J. Xu, “Microdisk resonators with lithium-niobate film on silicon substrate,” Opt. Express 27, 33662–33669 (2019).
    [Crossref]
  157. J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China. Ser. G 58, 114209 (2015).
    [Crossref]
  158. R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, “On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator,” Opt. Express 25, 24531–24539 (2017).
    [Crossref]
  159. Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photon. Res. 5, 623–628 (2017).
    [Crossref]
  160. S. Liu, Y. Zheng, Z. Fang, X. Ye, Y. Cheng, and X. Chen, “Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes,” Opt. Lett. 44, 1456–1459 (2019).
    [Crossref]
  161. Z. Hao, L. Zhang, W. Mao, A. Gao, X. Gao, F. Gao, F. Bo, G. Zhang, and J. Xu, “Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators,” Photon. Res. 8, 311–317 (2020).
    [Crossref]
  162. L. Zhang, Z. Hao, Q. Luo, A. Gao, R. Zhang, C. Yang, F. Gao, F. Bo, G. Zhang, and J. Xu, “Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes,” Opt. Lett. 45, 3353–3356 (2020).
    [Crossref]
  163. M. Eichenfield, Reduced Dimensionality Lithium Niobate Microsystems (Sandia National Lab, 2017).
  164. W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Rep. 6, 36920 (2016).
    [Crossref]
  165. L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Lončar, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” Optica 6, 1498–1505 (2019).
    [Crossref]
  166. S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib microring resonators in lithium niobate on insulator,” IEEE Photon. Technol. Lett. 28, 573–576 (2016).
    [Crossref]
  167. J. Lu, M. Li, C. Zou, A. A. Sayem, and H. Tang, “Towards 1% single photon nonlinearity with periodically-poled lithium niobate microring resonators,” Optica 7, 1654–1659 (2020).
    [Crossref]
  168. R. Wolf, Y. Jia, S. Bonaus, C. S. Werner, S. J. Herr, I. Breunig, K. Buse, and H. Zappe, “Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries,” Optica 5, 872–875 (2018).
    [Crossref]
  169. J.-Y. Chen, Y. M. Sua, H. Fan, and Y.-P. Huang, “Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics,” OSA Continuum 1, 229–242 (2018).
    [Crossref]
  170. R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
    [Crossref]
  171. Z. Gong, X. Liu, Y. Xu, M. Xu, J. B. Surya, J. Lu, A. Bruch, C. Zou, and H. X. Tang, “Soliton microcomb generation at 2 µm in z-cut lithium niobate microring resonators,” Opt. Lett. 44, 3182–3185 (2019).
    [Crossref]
  172. M. Yu, Y. Okawachi, R. Cheng, C. Wang, M. Zhang, A. L. Gaeta, and M. Lončar, “Raman lasing and soliton mode-locking in lithium niobate microresonators,” Light Sci Appl 9, 9 (2020).
    [Crossref]
  173. M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S. Fan, and M. Lončar, “Electronically programmable photonic molecule,” Nat. Photonics 13, 36–40 (2019).
    [Crossref]
  174. Y. Hu, M. Yu, D. Zhu, N. Sinclair, A. Shams-Ansari, L. Shao, J. Holzgrafe, E. Puma, M. Zhang, and M. Loncar, “Reconfigurable electro-optic frequency shifter,” arXiv:2005.09621 (2020).
  175. J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” Optica 7, 1714–1720 (2020).
    [Crossref]
  176. T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. Alex Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” Optica 7, 1737–1745 (2020).
    [Crossref]
  177. W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nat. Commun. 11, 1166 (2020).
    [Crossref]
  178. S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
    [Crossref]
  179. H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
    [Crossref]
  180. W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” Optica 6, 845–853 (2019).
    [Crossref]
  181. M. Li, H. Liang, R. Luo, Y. He, J. Ling, and Q. Lin, “Photon-level tuning of photonic nanocavities,” Optica 6, 860–863 (2019).
    [Crossref]
  182. M. Li, J. Ling, Y. He, U. A. Javid, S. Xue, and Q. Lin, “Lithium niobate photonic-crystal electro-optic modulator,” Nat. Commun. 11, 4123 (2020).
    [Crossref]
  183. R. W. Boyd, Nonlinear Optics (Elsevier, 2019).
  184. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  185. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, The Oxford Series in Electrical and Computer Engineering (Oxford University, 2006).
  186. C. Qin, H. Lu, B. Ercan, S. Li, and S. J. B. Yoo, “Single-tone optical frequency shifting and nonmagnetic optical isolation by electro-optical emulation of a rotating half-wave plate in a traveling-wave lithium niobate waveguide,” IEEE Photon. J. 9, 6600913 (2017).
    [Crossref]
  187. C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, “Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter,” Opt. Express 15, 2548–2554 (2007).
    [Crossref]
  188. L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
    [Crossref]
  189. A. A. Savchenkov, W. Liang, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical single-sideband modulator with complete sideband suppression,” Opt. Lett. 34, 1300–1302 (2009).
    [Crossref]
  190. R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 30, 1121–1137 (1982).
    [Crossref]
  191. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “Review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
    [Crossref]
  192. D. Janner, D. Tulli, M. García-Granda, M. Belmonte, and V. Pruneri, “Micro-structured integrated electro-optic LiNbO3 modulators,” Laser Photon. Rev. 3, 301–313 (2009).
    [Crossref]
  193. T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An integrated low-voltage broadband lithium niobate phase modulator,” IEEE Photon. Technol. Lett. 31, 889–892 (2019).
    [Crossref]
  194. L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
    [Crossref]
  195. M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17, 2225–2227 (1981).
    [Crossref]
  196. J. Jian, M. Xu, L. Liu, Y. Luo, J. Zhang, L. Liu, L. Zhou, H. Chen, S. Yu, and X. Cai, “High modulation efficiency lithium niobate Michelson interferometer modulator,” Opt. Express 27, 18731–18739 (2019).
    [Crossref]
  197. M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
    [Crossref]
  198. A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24, 3400114 (2018).
    [Crossref]
  199. A. Honardoost, R. Safian, A. Rao, and S. Fathpour, “High-speed modeling of ultracompact electrooptic modulators,” J. Lightwave Technol. 36, 5893–5902 (2018).
    [Crossref]
  200. N. Boynton, H. Cai, M. Gehl, S. Arterburn, C. Dallo, A. Pomerene, A. Starbuck, D. Hood, D. C. Trotter, T. Friedmann, C. T. DeRose, and A. Lentine, “A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator,” Opt. Express 28, 1868–1884 (2020).
    [Crossref]
  201. A. N. R. Ahmed, S. Nelan, S. Shi, P. Yao, A. Mercante, and D. W. Prather, “Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform,” Opt. Lett. 45, 1112–1115 (2020).
    [Crossref]
  202. M. Bahadori, L. L. Goddard, and S. Gong, “Fundamental electro-optic limitations of thin-film lithium niobate microring modulators,” Opt. Express 28, 13731–13749 (2020).
    [Crossref]
  203. P. Kharel, C. Reimer, K. Luke, L. He, and M. Zhang, “Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes,” arXiv:2011.13422 (2020).
  204. J. P. Salvestrini, L. Guilbert, M. Fontana, M. Abarkan, and S. Gille, “Analysis and control of the DC drift in LiNbO3-based Mach-Zehnder modulators,” J. Lightwave Technol. 29, 1522–1534 (2011).
    [Crossref]
  205. H. Nagata, N. F. O’Brien, W. R. Bosenberg, G. L. Reiff, and K. R. Voisine, “DC-voltage-induced thermal shift of bias point in LiNbO3 optical modulators,” IEEE Photon. Technol. Lett. 16, 2460–2462 (2004).
    [Crossref]
  206. R. Spickermann, S. R. Sakamoto, and N. Dagli, “In traveling wave modulators which velocity to match?” in Conference Proceedings LEOS’96 9th Annual Meeting IEEE Lasers and Electro-Optics Society (1996), Vol. 2, pp. 97–98.
  207. K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys. Part 1 45, 8696–8698 (2006).
    [Crossref]
  208. W. W. Rigrod and I. P. Kaminow, “Wide-band microwave light modulation,” Proc. IEEE 51, 137–140 (1963).
    [Crossref]
  209. D. M. Pozar, Microwave Engineering (Wiley, 2005).
  210. J. Shin, C. Ozturk, S. R. Sakamoto, Y. J. Chiu, and N. Dagli, “Novel T-rail electrodes for substrate removed low-voltage high-speed GaAs/AlGaAs electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 53, 636–643 (2005).
    [Crossref]
  211. G. Ghione, “Chapter 6: Modulators,” in Semiconductor Devices for High-Speed Optoelectronics (Cambridge University, 2009).
  212. J. A. I. Fuste and M. C. S. Blanco, “Bandwidth–length trade-off figures of merit for electro-optic traveling wave modulators,” Opt. Lett. 38, 1548–1550 (2013).
    [Crossref]
  213. A. Chowdhury and L. McCaughan, “Figure of merit for near-velocity-matched traveling-wave modulators,” Opt. Lett. 26, 1317–1319 (2001).
    [Crossref]
  214. A. N. P. An, C. H. U. Hangran, C. H. Z. Eng, and J. I. X. Ia, “Fundamental mode hybridization in a thin film lithium niobate ridge waveguide,” Opt. Express 27, 35659–35669 (2019).
    [Crossref]
  215. L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23, 13255–13264 (2015).
    [Crossref]
  216. A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 19, 312–314 (2007).
    [Crossref]
  217. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86, 161115 (2005).
    [Crossref]
  218. J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
    [Crossref]
  219. A. N. R. Ahmed, S. Shi, S. Nelan, A. J. Mercante, P. Yao, and D. W. Prather, “Low-voltage modulators using thin-film lithium niobate,” Proc. SPIE 11286, 112860U (2020).
    [Crossref]
  220. V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in CLEO (Optical Society of America, 2013), paper CW3O.3.
  221. V. E. Stenger, J. Toney, A. PoNick, D. Brown, B. Griffin, R. Nelson, and S. Sriram, “Low loss and low Vpi thin film lithium niobate on quartz electro-optic modulators,” in European Conference on Optical Communication (ECOC) (2017), pp. 1–3.
  222. V. Stenger, A. Pollick, and C. Acampado, “Integrable thin film lithium niobate (TFLNTM) on silicon electro-optic modulators,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2019), paper Tu2H.6.
  223. Y. Zhang, M. Xu, H. Zhang, M. Li, J. Jian, M. He, L. Chen, L. Wang, X. Cai, X. Xiao, and S. Yu, “220 Gbit/s optical PAM4 modulation based on lithium niobate on insulator modulator,” in 45th European Conference on Optical Communication (ECOC) (2019), pp. 1–4.
  224. X. P. Li, K. X. Chen, and L. F. Wang, “Compact and electro-optic tunable interleaver in lithium niobate thin film,” Opt. Lett. 43, 3610–3613 (2018).
    [Crossref]
  225. R. Safian, M. Teng, L. Zhuang, and S. Chakravarty, “Foundry-compatible thin film lithium niobate modulator with RF electrodes buried inside the silicon oxide layer of the SOI wafer,” Opt. Express 28, 25843–25857 (2020).
    [Crossref]
  226. V. E. Stenger, J. Toney, A. PoNick, D. Brown, B. Griffin, R. Nelson, and S. Sriram, “Low loss and low vpi thin film lithium niobate on quartz electro-optic modulators,” in European Conference on Optical Communication (ECOC) (IEEE, 2017).
  227. E. A. Douglas, P. Mahony, A. Starbuck, A. Pomerene, D. C. Trotter, and C. T. DeRose, “Effect of precursors on propagation loss for plasma-enhanced chemical vapor deposition of SiNx:H waveguides,” Opt. Mater. Express 6, 2892–2903 (2016).
    [Crossref]
  228. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
    [Crossref]
  229. W. D. Sacher and J. K. S. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16, 15741–15753 (2008).
    [Crossref]
  230. R. Stabile, A. Albores-Mejia, A. Rohit, and K. A. Williams, “Integrated optical switch matrices for packet data networks,” Microsyst. Nanoeng. 2, 15042 (2016).
    [Crossref]
  231. M. J. R. Heck, “Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics 6, 93–107 (2017).
    [Crossref]
  232. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [Crossref]
  233. M. Xu, M. He, S. Yu, and X. Cai, “Thin-film lithium niobate modulator based on distributed Bragg grating resonators,” in Asia Communications and Photonics Conference (ACPC) (Optical Society of America, 2019), paper S4D.5.
  234. M. R. Escalé, D. Pohl, A. Sergeyev, and R. Grange, “Extreme electro-optic tuning of Bragg mirrors integrated in lithium niobate nanowaveguides,” Opt. Lett. 43, 1515–1518 (2018).
    [Crossref]
  235. A. Parriaux, K. Hammani, and G. Millot, “Electro-optic frequency combs,” Adv. Opt. Photon. 12, 223–287 (2020).
    [Crossref]
  236. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol. 24, 2311–2317 (2006).
    [Crossref]
  237. C.-B. Huang, Z. Jiang, D. Leaird, J. Caraquitena, and A. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2, 227–248 (2008).
    [Crossref]
  238. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
    [Crossref]
  239. M. Abramowitz, I. A. Stegun, and D. Miller, “Handbook of mathematical functions with formulas, graphs and mathematical tables (National Bureau of Standards Applied Mathematics Series No. 55),” J. Appl. Mech. 32, 239 (1965).
    [Crossref]
  240. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
    [Crossref]
  241. M. Xu, M. He, and X. Cai, “Generation of flat optical frequency comb using integrated cascaded lithium niobate modulators,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2020), paper STh1O.5.
  242. T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
    [Crossref]
  243. M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
    [Crossref]
  244. K. Ho and J. M. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” IEEE Photon. Technol. Lett. 5, 721–725 (1993).
    [Crossref]
  245. A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
    [Crossref]
  246. B. Buscaino, M. Zhang, M. Lončar, and J. M. Kahn, “Design of efficient resonator-enhanced electro-optic frequency comb generators,” J. Lightwave Technol. 38, 1400–1413 (2020).
    [Crossref]
  247. N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13, 146–157 (2019).
    [Crossref]
  248. A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Lončar, “An integrated lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy,” arXiv:2003.04533 (2020).
  249. P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007).
  250. M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6, e17076 (2017).
    [Crossref]
  251. R. V. Kochanov, I. E. Gordon, L. S. Rothman, K. P. Shine, S. W. Sharpe, T. J. Johnson, T. J. Wallington, J. J. Harrison, P. F. Bernath, M. Birk, G. Wagner, K. Le Bris, I. Bravo, and C. Hill, “REPRINT OF: Infrared absorption cross-sections in HITRAN2016 and beyond: expansion for climate, environment, and atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 238, 106708 (2019).
    [Crossref]
  252. M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
    [Crossref]
  253. A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
    [Crossref]
  254. A. Shams-Ansari, C. Reimer, N. Sinclair, M. Zhang, N. Picque, and M. Loncar, “Low-repetition-rate integrated electro-optic frequency comb sources,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2020), paper STh1O.2.
  255. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
    [Crossref]
  256. J. M. Lukens and P. Lougovski, “Frequency-encoded photonic qubits for scalable quantum information processing,” Optica 4, 8–16 (2017).
    [Crossref]
  257. A. Rueda, F. Sedlmeir, M. C. Collodo, U. Vogl, B. Stiller, G. Schunk, D. V. Strekalov, C. Marquardt, J. M. Fink, O. Painter, G. Leuchs, and H. G. L. Schwefel, “Efficient microwave to optical photon conversion: an electro-optical realization,” Optica 3, 597–604 (2016).
    [Crossref]
  258. M. Tsang, “Cavity quantum electro-optics,” Phys. Rev. A 81, 063837 (2010).
    [Crossref]
  259. M. Tsang, “Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields,” Phys. Rev. A 84, 043845 (2011).
    [Crossref]
  260. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Whispering-gallery-mode electro-optic modulator and photonic microwave receiver,” J. Opt. Soc. Am. B 20, 333–342 (2003).
    [Crossref]
  261. M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, “Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators,” Phys. Rev. A 96, 043808 (2017).
    [Crossref]
  262. J. D. Witmer, T. P. McKenna, P. Arrangoiz-Arriola, R. Van Laer, E. Alex Wollack, F. Lin, A. K.-Y. Jen, J. Luo, and A. H. Safavi-Naeini, “A silicon-organic hybrid platform for quantum microwave-to-optical transduction,” Quantum Sci. Technol. 5, 034004 (2020).
    [Crossref]
  263. W. Hease, A. Rueda, R. Sahu, M. Wulf, G. Arnold, H. G. L. Schwefel, and J. M. Fink, “Cavity quantum electro-optics: microwave-telecom conversion in the quantum ground state,” PRX Quantum 1, 020315 (2020).
    [Crossref]
  264. M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver, “Superconducting qubits: current state of play,” Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).
    [Crossref]
  265. D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
    [Crossref]
  266. N. Lauk, N. Sinclair, S. Barzanjeh, J. P. Covey, M. Saffman, M. Spiropulu, and C. Simon, “Perspectives on quantum transduction,” Quantum Sci. Technol. 5, 020501 (2020).
    [Crossref]
  267. N. J. Lambert, A. Rueda, and F. Sedlmeir, “Coherent conversion between microwave and optical photons—an overview of physical implementations,” Adv. Quantum 3, 1900077 (2020).
    [Crossref]
  268. Y. Xu, A. A. Sayem, L. Fan, S. Wang, R. Cheng, C.-L. Zou, W. Fu, L. Yang, M. Xu, and H. X. Tang, “Bidirectional electro-optic conversion reaching 1% efficiency with thin-film lithium niobate,” arXiv:2012.14909 (2020).
  269. L. Yuan, Q. Lin, M. Xiao, and S. Fan, “Synthetic dimension in photonics,” Optica 5, 1396–1405 (2018).
    [Crossref]
  270. Y. Hu, C. Reimer, A. Shams-Ansari, M. Zhang, and M. Loncar, “Realization of high-dimensional frequency crystals in electro-optic microcombs,” Optica 7, 1189–1194 (2020).
    [Crossref]
  271. L. Yuan and S. Fan, “Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator,” Optica 3, 1014–1018 (2016).
    [Crossref]
  272. Q. Lin, M. Xiao, L. Yuan, and S. Fan, “Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension,” Nat. Commun. 7, 13731 (2016).
    [Crossref]
  273. L. Yuan, Y. Shi, and S. Fan, “Photonic gauge potential in a system with a synthetic frequency dimension,” Opt. Lett. 41, 741–744 (2016).
    [Crossref]
  274. L. Yuan, M. Xiao, Q. Lin, and S. Fan, “Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation,” Phys. Rev. B 97, 104105 (2018).
    [Crossref]
  275. T. Ozawa, H. M. Price, N. Goldman, O. Zilberberg, and I. Carusotto, “Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics,” Phys. Rev. A 93, 043827 (2016).
    [Crossref]
  276. L. Yuan, Q. Lin, A. Zhang, M. Xiao, X. Chen, and S. Fan, “Photonic gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions,” Phys. Rev. Lett. 122, 083903 (2019).
    [Crossref]
  277. A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, “Experimental band structure spectroscopy along a synthetic dimension,” Nat. Commun. 10, 3122 (2019).
    [Crossref]
  278. A. Dutt, Q. Lin, L. Yuan, M. Minkov, M. Xiao, and S. Fan, “A single photonic cavity with two independent physical synthetic dimensions,” Science 367, 59–64 (2020).
    [Crossref]
  279. K. Fang and S. Fan, “Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation,” Phys. Rev. Lett. 111, 203901 (2013).
    [Crossref]
  280. Q. Lin and S. Fan, “Light guiding by effective gauge field for photons,” Phys. Rev. X 4, 031031 (2014).
    [Crossref]
  281. L. Yuan and S. Fan, “Three-dimensional dynamic localization of light from a time-dependent effective gauge field for photons,” Phys. Rev. Lett. 114, 243901 (2015).
    [Crossref]
  282. L. Yuan and S. Fan, “Topologically nontrivial Floquet band structure in a system undergoing photonic transitions in the ultrastrong-coupling regime,” Phys. Rev. A 92, 053822 (2015).
    [Crossref]
  283. K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108, 153901 (2012).
    [Crossref]
  284. K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
    [Crossref]
  285. M. Minkov and V. Savona, “Haldane quantum Hall effect for light in a dynamically modulated array of resonators,” Optica 3, 200–206 (2016).
    [Crossref]
  286. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
    [Crossref]
  287. L. Yuan, D.-W. Wang, and S. Fan, “Synthetic gauge potential and effective magnetic field in a Raman medium undergoing molecular modulation,” Phys. Rev. A 95, 033801 (2017).
    [Crossref]
  288. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  289. Y. He, H. Liang, R. Luo, M. Li, and Q. Lin, “Dispersion engineered high quality lithium niobate microring resonators,” Opt. Express 26, 16315–16322 (2018).
    [Crossref]
  290. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate,” J. Opt. Soc. Am. B 14, 3319–3322 (1997).
    [Crossref]
  291. M. Nie and S.-W. Huang, “Quadratic soliton mode-locked degenerate optical parametric oscillator,” Opt. Lett. 45, 2311–2314 (2020).
    [Crossref]
  292. P. Vidaković, D. J. Lovering, J. A. Levenson, J. Webjörn, and P. St.J. Russell, “Large nonlinear phase shift owing to cascaded χ^(2) in quasi-phase-matched bulk LiNbO3,” Opt. Lett. 22, 277–279 (1997).
    [Crossref]
  293. Y. Okawachi, M. Yu, B. Desiatov, B. Y. Kim, T. Hansson, M. Lončar, and A. L. Gaeta, “Chip-based self-referencing using integrated lithium niobate waveguides,” Optica 7, 702–707 (2020).
    [Crossref]
  294. M. Yu, L. Shao, Y. Okawachi, A. L. Gaeta, and M. Loncar, “Ultraviolet to mid-infrared supercontinuum generation in lithium-niobate waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2020), paper STu4H.1.
  295. M. Jankowski, C. Langrock, B. Desiatov, A. Marandi, C. Wang, M. Zhang, C. R. Phillips, M. Lončar, and M. M. Fejer, “Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides,” Optica 7, 40–46 (2020).
    [Crossref]
  296. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev. 13, 1800288 (2019).
    [Crossref]
  297. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
    [Crossref]
  298. M. C. Wengler, B. Fassbender, E. Soergel, and K. Buse, “Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources,” J. Appl. Phys. 96, 2816–2820 (2004).
    [Crossref]
  299. V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981–1983 (1998).
    [Crossref]
  300. M. C. Wengler, M. Müller, E. Soergel, and K. Buse, “Poling dynamics of lithium niobate crystals,” Appl. Phys. B 76, 393–396 (2003).
    [Crossref]
  301. J. T. Nagy and R. M. Reano, “Periodic poling of ion-sliced X-cut magnesium oxide doped lithium niobate thin films,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SF2I.2.
  302. J. T. Nagy and R. M. Reano, “Reducing leakage current during periodic poling of ion-sliced x-cut MgO doped lithium niobate thin films,” Opt. Mater. Express 9, 3146–3155 (2019).
    [Crossref]
  303. L. Gui, Periodically Poled Ridge Waveguides and Photonic Wires in LiNbO3 for Efficient Nonlinear Interactions (University of Paderborn, 2010).
  304. G. Li, Y. Chen, H. Jiang, and X. Chen, “Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band,” Opt. Lett. 42, 939–942 (2017).
    [Crossref]
  305. L. Ge, Y. Chen, H. Jiang, G. Li, B. Zhu, Y. Liu, and X. Chen, “Broadband quasi-phase matching in a MgO:PPLN thin film,” Photon. Res. 6, 954–958 (2018).
    [Crossref]
  306. Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China. Phys. Mech. Astron. 61, 114211 (2018).
    [Crossref]
  307. J. Zhao, M. Rüsing, and S. Mookherjea, “Optical diagnostic methods for monitoring the poling of thin-film lithium niobate waveguides,” Opt. Express 27, 12025–12038 (2019).
    [Crossref]
  308. A. Rao, K. Abdelsalam, T. Sjaardema, A. Honardoost, G. F. Camacho-Gonzalez, and S. Fathpour, “Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600%W-1cm-2,” Opt. Express 27, 25920–25930 (2019).
    [Crossref]
  309. Y. Niu, C. Lin, X. Liu, Y. Chen, X. Hu, Y. Zhang, X. Cai, Y.-X. Gong, Z. Xie, and S. Zhu, “Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains,” Appl. Phys. Lett. 116, 101104 (2020).
    [Crossref]
  310. J. Zhao, M. Rüsing, M. Roeper, L. M. Eng, and S. Mookherjea, “Poling thin-film x-cut lithium niobate for quasi-phase matching with sub-micrometer periodicity,” J. Appl. Phys. 127, 193104 (2020).
    [Crossref]
  311. N. Ohnishi and T. Iizuka, “Etching study of microdomains in LiNbO3 single crystals,” J. Appl. Phys. 46, 1063–1067 (1975).
    [Crossref]
  312. J. Zhao, M. Rüsing, U. A. Javid, J. Ling, M. Li, Q. Lin, and S. Mookherjea, “Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation,” Opt. Express 28, 19669–19682 (2020).
    [Crossref]
  313. A. L. Kholkin, S. V. Kalinin, A. Roelofs, and A. Gruverman, “Review of ferroelectric domain imaging by piezoresponse force microscopy,” in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, S. Kalinin and A. Gruverman, eds. (Springer, 2007), pp. 173–214.
  314. M. Rüsing, J. Zhao, and S. Mookherjea, “Second harmonic microscopy of poled x-cut thin film lithium niobate: understanding the contrast mechanism,” J. Appl. Phys. 126, 114105 (2019).
    [Crossref]
  315. G. Lin, J. U. Fürst, D. V. Strekalov, and N. Yu, “Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators,” Appl. Phys. Lett. 103, 181107 (2013).
    [Crossref]
  316. D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18, 123002 (2016).
    [Crossref]
  317. J. Fürst, B. Sturman, K. Buse, and I. Breunig, “Whispering gallery resonators with broken axial symmetry: theory and experiment,” Opt. Express 24, 20143–20155 (2016).
    [Crossref]
  318. C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
    [Crossref]
  319. A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
    [Crossref]
  320. A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, and A. Mitchell, “Improved second harmonic performance in periodically poled LNOI waveguides through engineering of lateral leakage,” Opt. Express 27, 23919–23928 (2019).
    [Crossref]
  321. X. Guo, C.-L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3, 1126–1131 (2016).
    [Crossref]
  322. M. Minkov, D. Gerace, and S. Fan, “Doubly resonant χ(2) nonlinear photonic crystal cavity based on a bound state in the continuum,” Optica 6, 1039–1045 (2019).
    [Crossref]
  323. U. A. Javid, J. Ling, J. Staffa, M. Li, Y. He, and Q. Lin, “Ultra-broadband entangled photons on a nanophotonic chip,” arXiv:2101.04877 (2021).
  324. Z. Ma, J.-Y. Chen, Z. Li, C. Tang, Y. M. Sua, H. Fan, and Y.-P. Huang, “Ultrabright quantum photon sources on chip,” Phys. Rev. Lett. 125, 263602 (2020).
    [Crossref]
  325. R. Kumar and J. Ghosh, “Joint spectral amplitude analysis of SPDC photon pairs in a multimode ppLN ridge waveguide,” arXiv:1906.10344 (2019).
  326. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
    [Crossref]
  327. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011).
    [Crossref]
  328. M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007).
    [Crossref]
  329. X. Liu, L. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2):χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
    [Crossref]
  330. M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
    [Crossref]
  331. L. J. Qian, X. Liu, and F. W. Wise, “Femtosecond Kerr-lens mode locking with negative nonlinear phase shifts,” Opt. Lett. 24, 166–168 (1999).
    [Crossref]
  332. X. Liu, F. O. Ilday, K. Beckwitt, and F. W. Wise, “Femtosecond nonlinear polarization evolution based on cascade quadratic nonlinearities,” Opt. Lett. 25, 1394–1396 (2000).
    [Crossref]
  333. X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett. 82, 4631–4634 (1999).
    [Crossref]
  334. F. Ö. Ilday, K. Beckwitt, Y.-F. Chen, H. Lim, and F. W. Wise, “Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376–383 (2004).
    [Crossref]
  335. M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express 16, 3273–3287 (2008).
    [Crossref]
  336. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
    [Crossref]
  337. Z. Gong, X. Liu, Y. Xu, and H. X. Tang, “Near-octave lithium niobate soliton microcomb,” Optica 7, 1275–1278 (2020).
    [Crossref]
  338. Z. Gong, M. Li, X. Liu, Y. Xu, J. Lu, A. Bruch, J. B. Surya, C. Zou, and H. X. Tang, “Photonic dissipation control for Kerr soliton generation in strongly Raman-active media,” Phys. Rev. Lett. 125, 183901 (2020).
    [Crossref]
  339. Y. Xu, M. Shen, J. Lu, J. Surya, A. A. Sayem, and H. X. Tang, “Mitigating photorefractive effect in thin-film lithium niobate microring resonators,” Opt. Express 29, 5497–5504 (2021).
    [Crossref]
  340. H.-C. Huang, J. I. Dadap, I. P. Herman, H. Bakhru, and R. M. Osgood, “Micro-Raman spectroscopic visualization of lattice vibrations and strain in He+-implanted single-crystal LiNbO3,” Opt. Mater. Express 4, 338–345 (2014).
    [Crossref]
  341. H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express 3, 126–142 (2013).
    [Crossref]
  342. S. Sanna, S. Neufeld, M. Rüsing, G. Berth, A. Zrenner, and W. G. Schmidt, “Raman scattering efficiency in LiTaO3 and LiNbO3 crystals,” Phys. Rev. B 91, 224302 (2015).
    [Crossref]
  343. P. S. Zelenovskiy, V. Y. Shur, P. Bourson, M. D. Fontana, D. K. Kuznetsov, and E. A. Mingaliev, “Raman study of neutral and charged domain walls in lithium niobate,” Ferroelectrics 398, 34–41 (2010).
    [Crossref]
  344. S. Sanna, G. Berth, W. Hahn, A. Widhalm, A. Zrenner, and W. G. Schmidt, “Localised phonon modes at LiNbO3 (0001) surfaces,” Ferroelectrics 419, 1–8 (2011).
    [Crossref]
  345. M. Bache and R. Schiek, “Review of measurements of Kerr nonlinearities in lithium niobate: the role of the delayed Raman response,” arXiv:1211.1721 (2012).
  346. A. S. Barker and R. Loudon, “Dielectric properties and optical phonons in LiNbO3,” Phys. Rev. 158, 433–445 (1967).
    [Crossref]
  347. R. F. Schaufele and M. J. Weber, “Raman scattering by lithium niobate,” Phys. Rev. 152, 705–708 (1966).
    [Crossref]
  348. W. D. Johnston, I. P. Kaminow, and J. G. Bergman, “Stimulated Raman gain coefficients for Li6NbO3, Ba2NaNb5O15, and other materials,” Appl. Phys. Lett. 13, 190–193 (1968).
    [Crossref]
  349. V. S. Gorelik and P. P. Sverbil’, “Raman scattering by longitudinal and transverse optical vibrations in lithium niobate single crystals,” Inorg. Mater. 51, 1104–1110 (2015).
    [Crossref]
  350. C. H. Henry and J. J. Hopfield, “Raman scattering by polaritons,” Phys. Rev. Lett. 15, 964–966 (1965).
    [Crossref]
  351. M. Leidinger, B. Sturman, K. Buse, and I. Breunig, “Strong forward-backward asymmetry of stimulated Raman scattering in lithium-niobate-based whispering gallery resonators,” Opt. Lett. 41, 2823–2826 (2016).
    [Crossref]
  352. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  353. A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13, 158–169 (2019).
    [Crossref]
  354. D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
    [Crossref]
  355. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
    [Crossref]
  356. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
    [Crossref]
  357. N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duvall, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, and B. J. Eggleton, “Midinfrared supercontinuum generation from 2 to 6 µm in a silicon nanowire,” Optica 2, 797–802 (2015).
    [Crossref]
  358. X. Liu, M. Pu, B. Zhou, C. J. Krückel, A. Fülöp, V. Torres-Company, and M. Bache, “Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide,” Opt. Lett. 41, 2719–2722 (2016).
    [Crossref]
  359. D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
    [Crossref]
  360. N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 µm to beyond 2.4 µm,” Light Sci. Appl. 7, 17131 (2018).
    [Crossref]
  361. M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
    [Crossref]
  362. A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120 (2015).
    [Crossref]
  363. A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24, 11043–11053 (2016).
    [Crossref]
  364. D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42, 2314–2317 (2017).
    [Crossref]
  365. M. A. G. Porcel, F. Schepers, J. P. Epping, T. Hellwig, M. Hoekman, R. G. Heideman, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, C. Fallnich, and K.-J. Boller, “Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths,” Opt. Express 25, 1542–1554 (2017).
    [Crossref]
  366. D. Waldburger, A. S. Mayer, C. G. E. Alfieri, J. Nürnberg, A. R. Johnson, X. Ji, A. Klenner, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Tightly locked optical frequency comb from a semiconductor disk laser,” Opt. Express 27, 1786–1797 (2019).
    [Crossref]
  367. S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
    [Crossref]
  368. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
    [Crossref]
  369. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–640 (2000).
    [Crossref]
  370. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
    [Crossref]
  371. D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
    [Crossref]
  372. Y. Okawachi, M. Yu, J. Cardenas, X. Ji, A. Klenner, M. Lipson, and A. L. Gaeta, “Carrier envelope offset detection via simultaneous supercontinuum and second-harmonic generation in a silicon nitride waveguide,” Opt. Lett. 43, 4627–4630 (2018).
    [Crossref]
  373. D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
    [Crossref]
  374. J. Lu, J. B. Surya, X. Liu, Y. Xu, and H. X. Tang, “Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides,” Opt. Lett. 44, 1492–1495 (2019).
    [Crossref]
  375. G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, “Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides,” Opt. Express 15, 5382–5387 (2007).
    [Crossref]
  376. S. Wabnitz and V. V. Kozlov, “Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media,” J. Opt. Soc. Am. B 27, 1707–1711 (2010).
    [Crossref]
  377. T. Hansson, F. Leo, M. Erkintalo, J. Anthony, S. Coen, I. Ricciardi, M. De Rosa, and S. Wabnitz, “Single envelope equation modeling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearities,” J. Opt. Soc. Am. B 33, 1207–1215 (2016).
    [Crossref]
  378. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423–1431 (2008).
    [Crossref]
  379. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
    [Crossref]
  380. K. E. Webb, Y. Q. Xu, M. Erkintalo, and S. G. Murdoch, “Generalized dispersive wave emission in nonlinear fiber optics,” Opt. Lett. 38, 151–153 (2013).
    [Crossref]
  381. Y. Okawachi, M. Yu, J. Cardenas, X. Ji, M. Lipson, and A. L. Gaeta, “Coherent, directional supercontinuum generation,” Opt. Lett. 42, 4466–4469 (2017).
    [Crossref]
  382. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  383. H. C. Frankis, K. M. Kiani, D. Su, R. Mateman, A. Leinse, and J. D. B. Bradley, “High-Q tellurium-oxide-coated silicon nitride microring resonators,” Opt. Lett. 44, 118–121 (2019).
    [Crossref]
  384. K. Vu and S. Madden, “Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 2.8 dB/cm internal gain,” Opt. Express 18, 19192–19200 (2010).
    [Crossref]
  385. M. S. I. Khan, A. Mahmoud, L. Cai, M. Mahmoud, T. Mukherjee, J. A. Bain, and G. Piazza, “Extraction of elastooptic coefficient of thin-film arsenic trisulfide using a Mach–Zehnder acoustooptic modulator on lithium niobate,” J. Lightwave Technol. 38, 2053–2059 (2020).
    [Crossref]
  386. M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Quantum transduction of optical photons from a superconducting qubit,” Nature 588, 599–603 (2020).
    [Crossref]
  387. S. J. Whiteley, G. Wolfowicz, C. P. Anderson, A. Bourassa, H. Ma, M. Ye, G. Koolstra, K. J. Satzinger, M. V. Holt, F. J. Heremans, A. N. Cleland, D. I. Schuster, G. Galli, and D. D. Awschalom, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nat. Phys. 15, 490–495 (2019).
    [Crossref]
  388. C. Campbell, Surface Acoustic Wave Devices and Their Signal Processing Applications (Elsevier, 1989).
  389. L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y. I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, “Phononic band structure engineering for high- Q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12, 014022 (2019).
    [Crossref]
  390. F. M. Mayor, W. Jiang, C. J. Sarabalis, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Gigahertz phononic integrated circuits on thin-film lithium niobate on sapphire,” Phys. Rev. Appl. 15, 014039 (2021).
    [Crossref]
  391. L. Shao, D. Zhu, M. Colangelo, D. H. Lee, N. Sinclair, Y. Hu, P. T. Rakich, K. Lai, K. K. Berggren, and M. Loncar, “Electrical control of surface acoustic waves,” arXiv:2101.01626 (2021).
  392. Z. Y. Cheng and C. S. Tsai, “Baseband integrated acousto-optic frequency shifter,” Appl. Phys. Lett. 60, 12–14 (1992).
    [Crossref]
  393. L. Shao, N. Sinclair, J. Leatham, Y. Hu, M. Yu, T. Turpin, D. Crowe, and M. Lončar, “Integrated microwave acousto-optic frequency shifter on thin-film lithium niobate,” Opt. Express 28, 23728–23738 (2020).
    [Crossref]
  394. L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photon. Res. 7, 1003–1013 (2019).
    [Crossref]
  395. M. Mahmoud, A. Mahmoud, L. Cai, M. Khan, T. Mukherjee, J. Bain, and G. Piazza, “Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes,” Opt. Express 26, 25060–25075 (2018).
    [Crossref]
  396. L. Cai and G. Piazza, “Low-loss waveguides in Y-cut thin film lithium niobate for acousto-optic applications,” in Conference on Lasers and Electro-Optics (2019).
  397. C. J. Sarabalis, T. P. McKenna, R. N. Patel, R. Van Laer, and A. H. Safavi-Naeini, “Acousto-optic modulation in lithium niobate on sapphire,” APL Photon. 5, 086104 (2020).
    [Crossref]
  398. Z. Yu and X. Sun, “Gigahertz acousto-optic modulation and frequency shifting on etchless lithium niobate integrated platform,” arXiv:2006.12187 (2020).
  399. M. B. Tellekamp, J. C. Shank, M. S. Goorsky, and W. A. Doolittle, “Molecular beam epitaxy growth of high crystalline quality LiNbO3,” J. Electron. Mater. 45, 6292–6299 (2016).
    [Crossref]
  400. Y. D. Dahmani, C. J. Sarabalis, W. Jiang, F. M. Mayor, and A. H. Safavi-Naeini, “Piezoelectric transduction of a wavelength-scale mechanical waveguide,” Phys. Rev. Appl. 13, 024069 (2020).
    [Crossref]
  401. L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Loncar, “Acoustically mediated microwave-to-optical conversion on thin-film lithium niobate,” in IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) (2020), pp. 1215–1218.
  402. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2019).
  403. D. B. Sohn and G. Bahl, “Direction reconfigurable nonreciprocal acousto-optic modulator on chip,” APL Photon. 4, 126103 (2019).
    [Crossref]
  404. E. A. Kittlaus, W. M. Jones, P. T. Rakich, N. T. Otterstrom, R. E. Muller, and M. Rais-Zadeh, “Electrically-driven acousto-optics and broadband non-reciprocity in silicon photonics,” Nat. Photonics 15, 43–52 (2021).
    [Crossref]
  405. C. J. Sarabalis, R. Van Laer, R. N. Patel, Y. D. Dahmani, W. Jiang, F. M. Mayor, and A. H. Safavi-Naeini, “Acousto-optic modulation of a wavelength-scale waveguide,” Optica 8, 477–483 (2021).
    [Crossref]
  406. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  407. A. Honardoost, F. A. Juneghani, R. Safian, and S. Fathpour, “Towards subterahertz bandwidth ultracompact lithium niobate electrooptic modulators,” Opt. Express 27, 6495–6501 (2019).
    [Crossref]
  408. D. Pohl, M. Reig Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2020).
    [Crossref]
  409. S. Ferrari, C. Schuck, and W. Pernice, “Waveguide-integrated superconducting nanowire single-photon detectors,” Nanophotonics 7, 1725–1758 (2018).
    [Crossref]
  410. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
    [Crossref]
  411. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
    [Crossref]
  412. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73, 735 (1998).
    [Crossref]
  413. A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791–793 (2003).
    [Crossref]
  414. M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012).
    [Crossref]
  415. E. Smirnov, A. Golikov, P. Zolotov, V. Kovalyuk, M. Lobino, B. Voronov, A. Korneev, and G. Goltsman, “Superconducting nanowire single-photon detector on lithium niobate,” J. Phys. Conf. Ser. 1124, 051025 (2018).
    [Crossref]
  416. J. P. Höpker, M. Bartnick, E. Meyer-Scott, F. Thiele, T. Meier, T. Bartley, S. Krapick, N. M. Montaut, M. Santandrea, H. Herrmann, S. Lengeling, R. Ricken, V. Quiring, A. E. Lita, V. B. Verma, T. Gerrits, S. W. Nam, and C. Silberhorn, “Towards integrated superconducting detectors on lithium niobate waveguides,” Proc. SPIE 10358, 1035809 (2017).
    [Crossref]
  417. J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photon. 4, 056103 (2019).
    [Crossref]
  418. M. Colangelo, B. Desiatov, D. Zhu, J. Holzgrafe, O. Medeiros, M. Loncar, and K. K. Berggren, “Superconducting nanowire single-photon detector on thin- film lithium niobate photonic waveguide,” in CLEO: Science and Innovations (2020), paper SM4O.4.
  419. B. Desiatov and M. Lončar, “Silicon photodetector for integrated lithium niobate photonics,” Appl. Phys. Lett. 115, 121108 (2019).
    [Crossref]
  420. A. A. Sayem, R. Cheng, S. Wang, and H. X. Tang, “Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 116, 151102 (2020).
    [Crossref]
  421. R. Cheng, S. Wang, and H. X. Tang, “Superconducting nanowire single-photon detectors fabricated from atomic-layer- deposited NbN,” Appl. Phys. Lett. 115, 241101 (2019).
    [Crossref]
  422. A. E. Dane, A. N. McCaughan, D. Zhu, Q. Zhao, C.-S. Kim, N. Calandri, A. Agarwal, F. Bellei, and K. K. Berggren, “Bias sputtered NbN and superconducting nanowire devices,” Appl. Phys. Lett. 111, 122601 (2017).
    [Crossref]
  423. M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
    [Crossref]
  424. R. Cheng, S. Wang, C.-L. Zou, and H. X. Tang, “Design of a micrometer-long superconducting nanowire perfect absorber for efficient high-speed single-photon detection,” Photon. Res. 8, 1260–1267 (2020).
    [Crossref]
  425. N. A. Tyler, J. Barreto, G. E. Villarreal-Garcia, D. Bonneau, D. Sahin, J. L. O’Brien, and M. G. Thompson, “Modelling superconducting nanowire single photon detectors in a waveguide cavity,” Opt. Express 24, 8797–8808 (2016).
    [Crossref]
  426. F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
    [Crossref]
  427. R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, and D. Englund, “Large-scale optical neural networks based on photoelectric multiplication,” Phys. Rev. X 9, 021032 (2019).
    [Crossref]
  428. W. K. Chan, A. Yi-Yan, T. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, and J. P. Harbison, “GaAs photodetectors integrated with lithium niobate waveguides,” IEEE Trans. Electron Devices 36, 2627–2628 (1989).
    [Crossref]
  429. J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17, 7394–7400 (2017).
    [Crossref]
  430. D. J. P. Ellis, A. J. Bennett, C. Dangel, J. P. Lee, J. P. Griffiths, T. A. Mitchell, T.-K. Paraiso, P. Spencer, D. A. Ritchie, and A. J. Shields, “Independent indistinguishable quantum light sources on a reconfigurable photonic integrated circuit,” Appl. Phys. Lett. 112, 211104 (2018).
    [Crossref]
  431. I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
    [Crossref]
  432. S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Lončar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113, 221102 (2018).
    [Crossref]
  433. D. White, A. Branny, R. J. Chapman, R. Picard, M. Brotons-Gisbert, A. Boes, A. Peruzzo, C. Bonato, and B. D. Gerardot, “Atomically-thin quantum dots integrated with lithium niobate photonic chips,” Opt. Mater. Express 9, 441–448 (2019).
    [Crossref]
  434. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded (CRC Press, 2001).
  435. G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2006).
  436. C. W. Thiel, T. Böttger, and R. L. Cone, “Rare-earth-doped materials for applications in quantum information storage and signal processing,” J. Lumin. 131, 353–361 (2011).
    [Crossref]
  437. S. Dutta, E. A. Goldschmidt, S. Barik, U. Saha, and E. Waks, “Integrated photonic platform for rare-earth ions in thin film lithium niobate,” Nano Lett. 20, 741–747 (2020).
    [Crossref]
  438. T. Zhong and P. Goldner, “Emerging rare-earth doped material platforms for quantum nanophotonics,” Nanophotonics 8, 2003–2015 (2019).
    [Crossref]
  439. N. Sinclair, D. Oblak, C. W. Thiel, R. L. Cone, and W. Tittel, “Properties of a rare-earth-ion-doped waveguide at sub-kelvin temperatures for quantum signal processing,” Phys. Rev. Lett. 118, 100504 (2017).
    [Crossref]
  440. D. Pak, H. An, A. Nandi, X. Jiang, Y. Xuan, and M. Hosseini, “Ytterbium-implanted photonic resonators based on thin film lithium niobate,” J. Appl. Phys. 128, 084302 (2020).
    [Crossref]
  441. J. Zhou, Y. Liang, Z. Liu, W. Chu, H. Zhang, D. Yin, Z. Fang, R. Wu, J. Zhang, W. Chen, Z. Wang, Y. Zhou, M. Wang, and Y. Cheng, “On-chip integrated waveguide amplifiers on erbium-doped thin film lithium niobate on insulator,” arXiv:2101.00783 (2021).
  442. Z. Chen, Q. Xu, K. Zhang, W.-H. Wong, D.-L. Zhang, E. Y.-B. Pun, and C. Wang, “Efficient erbium-doped thin-film lithium niobate waveguide amplifiers,” arXiv:2101.06994 (2021).
  443. Z. Wang, Z. Fang, Z. Liu, W. Chu, Y. Zhou, J. Zhang, R. Wu, M. Wang, T. Lu, and Y. Cheng, “An on-chip tunable micro-disk laser fabricated on Er3+ doped lithium niobate on insulator (LNOI),” arXiv:2009.08953 (2020).
  444. Q. Luo, Z. Hao, C. Yang, R. Zhang, D. Zheng, S. Liu, H. Liu, F. Bo, Y. Kong, G. Zhang, and J. Xu, “Microdisk lasers on an erbium-doped lithium-niobite chip,” Sci. China Phys. Mech. Astron. 64, 100504 (2021).
    [Crossref]
  445. Y. Liu, X. Yan, J. Wu, B. Zhu, Y. Chen, and X. Chen, “On-chip erbium-doped lithium niobate microcavity laser,” Sci. China Phys. Mech. Astron. 64, 234262 (2021).
    [Crossref]
  446. S. Sun, M. He, M. Xu, S. Gao, S. Yu, and X. Cai, “Hybrid silicon and lithium niobate modulator,” IEEE J. Sel. Top. Quantum Electron. 27, 3300112 (2021).
    [Crossref]
  447. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
    [Crossref]
  448. J. Zhang, B. Haq, J. O’Callaghan, A. Gocalinska, E. Pelucchi, A. J. Trindade, B. Corbett, G. Morthier, and G. Roelkens, “Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser,” Opt. Express 26, 8821–8830 (2018).
    [Crossref]
  449. Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-power photodiodes with 65 GHz bandwidth heterogeneously integrated onto silicon-on-insulator nano-waveguides,” IEEE J. Sel. Top. Quantum Electron. 24, 6000206 (2018).
    [Crossref]
  450. Q. Yu, J. Gao, N. Ye, B. Chen, K. Sun, L. Xie, K. Srinivasan, M. Zervas, G. Navickaite, M. Geiselmann, and A. Beling, “Heterogeneous photodiodes on silicon nitride waveguides,” Opt. Express 28, 14824–14830 (2020).
    [Crossref]
  451. J. Zhang, G. Muliuk, J. Juvert, S. Kumari, J. Goyvaerts, B. Haq, C. Op de Beeck, B. Kuyken, G. Morthier, D. Van Thourhout, R. Baets, G. Lepage, P. Verheyen, J. Van Campenhout, A. Gocalinska, J. O’Callaghan, E. Pelucchi, K. Thomas, B. Corbett, A. J. Trindade, and G. Roelkens, “III-V-on-Si photonic integrated circuits realized using micro-transfer-printing,” APL Photon. 4, 110803 (2019).
    [Crossref]
  452. R. Gerson, J. F. Kirchhoff, L. E. Halliburton, and D. A. Bryan, “Photoconductivity parameters in lithium niobate,” J. Appl. Phys. 60, 3553–3557 (1986).
    [Crossref]
  453. P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications 1: Basic Effects (Springer, 2005).
  454. S. Yamada and M. Minakata, “DC drift phenomena in LiNbO3 optical waveguide devices,” Jpn. J. Appl. Phys. 20, 733–737 (1981).
    [Crossref]
  455. H. Jiang, R. Luo, H. Liang, X. Chen, Y. Chen, and Q. Lin, “Fast response of photorefraction in lithium niobate microresonators,” Opt. Lett. 42, 3267–3270 (2017).
    [Crossref]
  456. X. Sun, H. Liang, R. Luo, W. C. Jiang, X.-C. Zhang, and Q. Lin, “Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators,” Opt. Express 25, 13504–13516 (2017).
    [Crossref]
  457. J. B. Surya, J. Lu, Y. Xu, and H. X. Tang, “Stable tuning of photorefractive microcavities using an auxiliary laser,” Opt. Lett. 46, 328–331 (2021).
    [Crossref]
  458. P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications 1: Basic Effects (Springer, 2006).
  459. V. E. Wood, P. J. Cressman, R. L. Holman, and C. M. Verber, Photorefractive Effects in Waveguides, Photorefractive Materials and Their Applications II. Topics in Applied Physics, P. Günter and J. P. Huignard, eds. (Springer, 1989), Vol. 62.
  460. Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32, 1806452 (2020).
    [Crossref]
  461. J. Rams, A. Alcázar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178, 211–216 (2000).
    [Crossref]
  462. R. A. Becker, “Circuit effect in LiNbO3 channel-waveguide modulators,” Opt. Lett. 10, 417–419 (1985).
    [Crossref]
  463. C. M. Gee, G. D. Thurmond, H. Blauvelt, and H. W. Yen, “Minimizing dc drift in LiNbO3 waveguide devices,” Appl. Phys. Lett. 47, 211–213 (1985).
    [Crossref]
  464. S. K. Korotky and J. J. Veselka, “An RC network analysis of long term Ti:LiNbO3 bias stability,” J. Lightwave Technol. 14, 2687–2697 (1996).
    [Crossref]
  465. J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Loncar, “Toward efficient microwave-optical transduction using cavity electro-optics in thin-film lithium niobate,” in Conference on Lasers and Electro-Optics (OSA, 2020).
  466. S. Sun, M. He, M. Xu, S. Gao, Z. Chen, X. Zhang, Z. Ruan, X. Wu, L. Zhou, L. Liu, C. Lu, C. Guo, L. Liu, S. Yu, and X. Cai, “Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform,” Photon. Res. 8, 1958–1963 (2020).
    [Crossref]
  467. H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science 370, 1460–1463 (2020).
    [Crossref]
  468. J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020).
    [Crossref]
  469. J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
    [Crossref]
  470. N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophotonic processors,” Optica 5, 1623–1631 (2018).
    [Crossref]
  471. I. Dhand, “Circumventing defective components in linear optical interferometers,” arXiv:1912.08789 (2019).
  472. S. Slussarenko and G. J. Pryde, “Photonic quantum information processing: a concise review,” Appl. Phys. Rev. 6, 041303 (2019).
    [Crossref]
  473. H.-H. Lu, J. M. Lukens, B. P. Williams, P. Imany, N. A. Peters, A. M. Weiner, and P. Lougovski, “A controlled-NOT gate for frequency-bin qubits,” npj Quantum Inf. 5, 24 (2019).
    [Crossref]
  474. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002).
    [Crossref]
  475. C. Joshi, A. Farsi, C. Clemmen, S. Ramelow, and A. Gaeta, “Frequency multiplexing for quasi-deterministic heralded single-photon sources,” Nat. Commun. 9, 847 (2018).
    [Crossref]
  476. C. Joshi, A. Farsi, A. Dutt, B.-Y. Kim, X. Ji, Y. Zhao, A. M. Bishop, M. Lipson, and A. L. Gaeta, “Frequency-domain quantum interference with correlated photons from an integrated microresonator,” Phys. Rev. Lett. 124, 143601 (2020).
    [Crossref]
  477. Y. Soudagar, F. Bussières, G. Berlín, S. Lacroix, J. M. Fernandez, and N. Godbout, “Cluster-state quantum computing in optical fibers,” J. Opt. Soc. Am. B 24, 226–230 (2007).
    [Crossref]
  478. M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
    [Crossref]
  479. F. Kaneda and P. G. Kwiat, “High-efficiency single-photon generation via large-scale active time multiplexing,” Sci. Adv. 5, eaaw8586 (2019).
    [Crossref]
  480. M. G. Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 1–6 (2017).
    [Crossref]
  481. C. Etrich, U. Peschel, and F. Lederer, “Solitary waves in quadratically nonlinear resonators,” Phys. Rev. Lett. 79, 2454–2457 (1997).
    [Crossref]
  482. A. U. Nielsen, Y. Xu, M. Ferré, M. G. Clerc, S. Coen, S. G. Murdoch, and M. Erkintalo, “Engineered discreteness enables observation and control of chimera-like states in a system with local coupling,” arXiv:1910.11329 (2019).
  483. A. K. Tusnin, A. M. Tikan, and T. J. Kippenberg, “Nonlinear states and dynamics in a synthetic frequency dimension,” Phys. Rev. A 102, 023518 (2020).
    [Crossref]
  484. M. Zhang, C. Reimer, L. He, R. Cheng, M. Yu, R. Zhu, and M. Loncar, “Microresonator frequency comb generation with simultaneous Kerr and electro-optic nonlinearities,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2019), pp. 1–2.
  485. Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photonics 9, 388–392 (2015).
    [Crossref]
  486. K. Abdelsalam, T. Li, J. B. Khurgin, and S. Fathpour, “Linear isolators using wavelength conversion,” Optica 7, 209–213 (2020).
    [Crossref]
  487. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
    [Crossref]
  488. D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
    [Crossref]
  489. J. Wang, Y. Shi, and S. Fan, “Non-reciprocal polarization rotation using dynamic refractive index modulation,” Opt. Express 28, 11974–11982 (2020).
    [Crossref]
  490. L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8, 701–705 (2014).
    [Crossref]
  491. H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
    [Crossref]
  492. D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photonics 12, 91–97 (2018).
    [Crossref]
  493. E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
    [Crossref]
  494. D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
    [Crossref]
  495. Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Integrated microwave photonic filters,” Adv. Opt. Photon. 12, 485–555 (2020).
    [Crossref]
  496. C. Deakin and Z. Liu, “Dual frequency comb assisted analog-to-digital conversion,” Opt. Lett. 45, 173–176 (2020).
    [Crossref]
  497. K. Luke, P. Kharel, C. Reimer, L. He, M. Loncar, and M. Zhang, “Wafer-scale low-loss lithium niobate photonic integrated circuits,” Opt. Express 28, 24452–24458 (2020).
    [Crossref]

2021 (9)

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

Y. Xu, M. Shen, J. Lu, J. Surya, A. A. Sayem, and H. X. Tang, “Mitigating photorefractive effect in thin-film lithium niobate microring resonators,” Opt. Express 29, 5497–5504 (2021).
[Crossref]

F. M. Mayor, W. Jiang, C. J. Sarabalis, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Gigahertz phononic integrated circuits on thin-film lithium niobate on sapphire,” Phys. Rev. Appl. 15, 014039 (2021).
[Crossref]

E. A. Kittlaus, W. M. Jones, P. T. Rakich, N. T. Otterstrom, R. E. Muller, and M. Rais-Zadeh, “Electrically-driven acousto-optics and broadband non-reciprocity in silicon photonics,” Nat. Photonics 15, 43–52 (2021).
[Crossref]

C. J. Sarabalis, R. Van Laer, R. N. Patel, Y. D. Dahmani, W. Jiang, F. M. Mayor, and A. H. Safavi-Naeini, “Acousto-optic modulation of a wavelength-scale waveguide,” Optica 8, 477–483 (2021).
[Crossref]

Q. Luo, Z. Hao, C. Yang, R. Zhang, D. Zheng, S. Liu, H. Liu, F. Bo, Y. Kong, G. Zhang, and J. Xu, “Microdisk lasers on an erbium-doped lithium-niobite chip,” Sci. China Phys. Mech. Astron. 64, 100504 (2021).
[Crossref]

Y. Liu, X. Yan, J. Wu, B. Zhu, Y. Chen, and X. Chen, “On-chip erbium-doped lithium niobate microcavity laser,” Sci. China Phys. Mech. Astron. 64, 234262 (2021).
[Crossref]

S. Sun, M. He, M. Xu, S. Gao, S. Yu, and X. Cai, “Hybrid silicon and lithium niobate modulator,” IEEE J. Sel. Top. Quantum Electron. 27, 3300112 (2021).
[Crossref]

J. B. Surya, J. Lu, Y. Xu, and H. X. Tang, “Stable tuning of photorefractive microcavities using an auxiliary laser,” Opt. Lett. 46, 328–331 (2021).
[Crossref]

2020 (68)

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32, 1806452 (2020).
[Crossref]

S. Sun, M. He, M. Xu, S. Gao, Z. Chen, X. Zhang, Z. Ruan, X. Wu, L. Zhou, L. Liu, C. Lu, C. Guo, L. Liu, S. Yu, and X. Cai, “Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform,” Photon. Res. 8, 1958–1963 (2020).
[Crossref]

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science 370, 1460–1463 (2020).
[Crossref]

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020).
[Crossref]

D. Pak, H. An, A. Nandi, X. Jiang, Y. Xuan, and M. Hosseini, “Ytterbium-implanted photonic resonators based on thin film lithium niobate,” J. Appl. Phys. 128, 084302 (2020).
[Crossref]

Q. Yu, J. Gao, N. Ye, B. Chen, K. Sun, L. Xie, K. Srinivasan, M. Zervas, G. Navickaite, M. Geiselmann, and A. Beling, “Heterogeneous photodiodes on silicon nitride waveguides,” Opt. Express 28, 14824–14830 (2020).
[Crossref]

C. Joshi, A. Farsi, A. Dutt, B.-Y. Kim, X. Ji, Y. Zhao, A. M. Bishop, M. Lipson, and A. L. Gaeta, “Frequency-domain quantum interference with correlated photons from an integrated microresonator,” Phys. Rev. Lett. 124, 143601 (2020).
[Crossref]

A. K. Tusnin, A. M. Tikan, and T. J. Kippenberg, “Nonlinear states and dynamics in a synthetic frequency dimension,” Phys. Rev. A 102, 023518 (2020).
[Crossref]

K. Abdelsalam, T. Li, J. B. Khurgin, and S. Fathpour, “Linear isolators using wavelength conversion,” Optica 7, 209–213 (2020).
[Crossref]

S. Dutta, E. A. Goldschmidt, S. Barik, U. Saha, and E. Waks, “Integrated photonic platform for rare-earth ions in thin film lithium niobate,” Nano Lett. 20, 741–747 (2020).
[Crossref]

R. Cheng, S. Wang, C.-L. Zou, and H. X. Tang, “Design of a micrometer-long superconducting nanowire perfect absorber for efficient high-speed single-photon detection,” Photon. Res. 8, 1260–1267 (2020).
[Crossref]

D. Pohl, M. Reig Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2020).
[Crossref]

A. A. Sayem, R. Cheng, S. Wang, and H. X. Tang, “Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 116, 151102 (2020).
[Crossref]

L. Shao, N. Sinclair, J. Leatham, Y. Hu, M. Yu, T. Turpin, D. Crowe, and M. Lončar, “Integrated microwave acousto-optic frequency shifter on thin-film lithium niobate,” Opt. Express 28, 23728–23738 (2020).
[Crossref]

C. J. Sarabalis, T. P. McKenna, R. N. Patel, R. Van Laer, and A. H. Safavi-Naeini, “Acousto-optic modulation in lithium niobate on sapphire,” APL Photon. 5, 086104 (2020).
[Crossref]

Y. D. Dahmani, C. J. Sarabalis, W. Jiang, F. M. Mayor, and A. H. Safavi-Naeini, “Piezoelectric transduction of a wavelength-scale mechanical waveguide,” Phys. Rev. Appl. 13, 024069 (2020).
[Crossref]

M. S. I. Khan, A. Mahmoud, L. Cai, M. Mahmoud, T. Mukherjee, J. A. Bain, and G. Piazza, “Extraction of elastooptic coefficient of thin-film arsenic trisulfide using a Mach–Zehnder acoustooptic modulator on lithium niobate,” J. Lightwave Technol. 38, 2053–2059 (2020).
[Crossref]

M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Quantum transduction of optical photons from a superconducting qubit,” Nature 588, 599–603 (2020).
[Crossref]

Z. Gong, X. Liu, Y. Xu, and H. X. Tang, “Near-octave lithium niobate soliton microcomb,” Optica 7, 1275–1278 (2020).
[Crossref]

Z. Gong, M. Li, X. Liu, Y. Xu, J. Lu, A. Bruch, J. B. Surya, C. Zou, and H. X. Tang, “Photonic dissipation control for Kerr soliton generation in strongly Raman-active media,” Phys. Rev. Lett. 125, 183901 (2020).
[Crossref]

Z. Ma, J.-Y. Chen, Z. Li, C. Tang, Y. M. Sua, H. Fan, and Y.-P. Huang, “Ultrabright quantum photon sources on chip,” Phys. Rev. Lett. 125, 263602 (2020).
[Crossref]

J. Wang, Y. Shi, and S. Fan, “Non-reciprocal polarization rotation using dynamic refractive index modulation,” Opt. Express 28, 11974–11982 (2020).
[Crossref]

Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Integrated microwave photonic filters,” Adv. Opt. Photon. 12, 485–555 (2020).
[Crossref]

C. Deakin and Z. Liu, “Dual frequency comb assisted analog-to-digital conversion,” Opt. Lett. 45, 173–176 (2020).
[Crossref]

K. Luke, P. Kharel, C. Reimer, L. He, M. Loncar, and M. Zhang, “Wafer-scale low-loss lithium niobate photonic integrated circuits,” Opt. Express 28, 24452–24458 (2020).
[Crossref]

N. Lauk, N. Sinclair, S. Barzanjeh, J. P. Covey, M. Saffman, M. Spiropulu, and C. Simon, “Perspectives on quantum transduction,” Quantum Sci. Technol. 5, 020501 (2020).
[Crossref]

N. J. Lambert, A. Rueda, and F. Sedlmeir, “Coherent conversion between microwave and optical photons—an overview of physical implementations,” Adv. Quantum 3, 1900077 (2020).
[Crossref]

Y. Hu, C. Reimer, A. Shams-Ansari, M. Zhang, and M. Loncar, “Realization of high-dimensional frequency crystals in electro-optic microcombs,” Optica 7, 1189–1194 (2020).
[Crossref]

B. Buscaino, M. Zhang, M. Lončar, and J. M. Kahn, “Design of efficient resonator-enhanced electro-optic frequency comb generators,” J. Lightwave Technol. 38, 1400–1413 (2020).
[Crossref]

J. D. Witmer, T. P. McKenna, P. Arrangoiz-Arriola, R. Van Laer, E. Alex Wollack, F. Lin, A. K.-Y. Jen, J. Luo, and A. H. Safavi-Naeini, “A silicon-organic hybrid platform for quantum microwave-to-optical transduction,” Quantum Sci. Technol. 5, 034004 (2020).
[Crossref]

W. Hease, A. Rueda, R. Sahu, M. Wulf, G. Arnold, H. G. L. Schwefel, and J. M. Fink, “Cavity quantum electro-optics: microwave-telecom conversion in the quantum ground state,” PRX Quantum 1, 020315 (2020).
[Crossref]

M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver, “Superconducting qubits: current state of play,” Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).
[Crossref]

A. Dutt, Q. Lin, L. Yuan, M. Minkov, M. Xiao, and S. Fan, “A single photonic cavity with two independent physical synthetic dimensions,” Science 367, 59–64 (2020).
[Crossref]

Y. Okawachi, M. Yu, B. Desiatov, B. Y. Kim, T. Hansson, M. Lončar, and A. L. Gaeta, “Chip-based self-referencing using integrated lithium niobate waveguides,” Optica 7, 702–707 (2020).
[Crossref]

M. Jankowski, C. Langrock, B. Desiatov, A. Marandi, C. Wang, M. Zhang, C. R. Phillips, M. Lončar, and M. M. Fejer, “Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides,” Optica 7, 40–46 (2020).
[Crossref]

M. Nie and S.-W. Huang, “Quadratic soliton mode-locked degenerate optical parametric oscillator,” Opt. Lett. 45, 2311–2314 (2020).
[Crossref]

Y. Niu, C. Lin, X. Liu, Y. Chen, X. Hu, Y. Zhang, X. Cai, Y.-X. Gong, Z. Xie, and S. Zhu, “Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains,” Appl. Phys. Lett. 116, 101104 (2020).
[Crossref]

J. Zhao, M. Rüsing, M. Roeper, L. M. Eng, and S. Mookherjea, “Poling thin-film x-cut lithium niobate for quasi-phase matching with sub-micrometer periodicity,” J. Appl. Phys. 127, 193104 (2020).
[Crossref]

J. Zhao, M. Rüsing, U. A. Javid, J. Ling, M. Li, Q. Lin, and S. Mookherjea, “Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation,” Opt. Express 28, 19669–19682 (2020).
[Crossref]

Z. Hao, L. Zhang, W. Mao, A. Gao, X. Gao, F. Gao, F. Bo, G. Zhang, and J. Xu, “Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators,” Photon. Res. 8, 311–317 (2020).
[Crossref]

L. Zhang, Z. Hao, Q. Luo, A. Gao, R. Zhang, C. Yang, F. Gao, F. Bo, G. Zhang, and J. Xu, “Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes,” Opt. Lett. 45, 3353–3356 (2020).
[Crossref]

J. Lu, M. Li, C. Zou, A. A. Sayem, and H. Tang, “Towards 1% single photon nonlinearity with periodically-poled lithium niobate microring resonators,” Optica 7, 1654–1659 (2020).
[Crossref]

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” Optica 7, 1714–1720 (2020).
[Crossref]

T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. Alex Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” Optica 7, 1737–1745 (2020).
[Crossref]

W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nat. Commun. 11, 1166 (2020).
[Crossref]

M. Yu, Y. Okawachi, R. Cheng, C. Wang, M. Zhang, A. L. Gaeta, and M. Lončar, “Raman lasing and soliton mode-locking in lithium niobate microresonators,” Light Sci Appl 9, 9 (2020).
[Crossref]

M. Li, J. Ling, Y. He, U. A. Javid, S. Xue, and Q. Lin, “Lithium niobate photonic-crystal electro-optic modulator,” Nat. Commun. 11, 4123 (2020).
[Crossref]

N. Boynton, H. Cai, M. Gehl, S. Arterburn, C. Dallo, A. Pomerene, A. Starbuck, D. Hood, D. C. Trotter, T. Friedmann, C. T. DeRose, and A. Lentine, “A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator,” Opt. Express 28, 1868–1884 (2020).
[Crossref]

A. N. R. Ahmed, S. Nelan, S. Shi, P. Yao, A. Mercante, and D. W. Prather, “Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform,” Opt. Lett. 45, 1112–1115 (2020).
[Crossref]

M. Bahadori, L. L. Goddard, and S. Gong, “Fundamental electro-optic limitations of thin-film lithium niobate microring modulators,” Opt. Express 28, 13731–13749 (2020).
[Crossref]

A. N. R. Ahmed, S. Shi, S. Nelan, A. J. Mercante, P. Yao, and D. W. Prather, “Low-voltage modulators using thin-film lithium niobate,” Proc. SPIE 11286, 112860U (2020).
[Crossref]

R. Safian, M. Teng, L. Zhuang, and S. Chakravarty, “Foundry-compatible thin film lithium niobate modulator with RF electrodes buried inside the silicon oxide layer of the SOI wafer,” Opt. Express 28, 25843–25857 (2020).
[Crossref]

A. Parriaux, K. Hammani, and G. Millot, “Electro-optic frequency combs,” Adv. Opt. Photon. 12, 223–287 (2020).
[Crossref]

D. M. Lukin, C. Dory, M. A. Guidry, K. Y. Yang, S. D. Mishra, R. Trivedi, M. Radulaski, S. Sun, D. Vercruysse, G. H. Ahn, and J. Vučković, “4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics,” Nat. Photonics 14, 330–334 (2020).
[Crossref]

M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, and X. Cai, “High-performance coherent optical modulators based on thin-film lithium niobate platform,” Nat. Commun. 11, 3911 (2020).
[Crossref]

J. Zhao, C. Ma, M. Rüsing, and S. Mookherjea, “High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides,” Phys. Rev. Lett. 124, 163603 (2020).
[Crossref]

Y. Qi and Y. Li, “Integrated lithium niobate photonics,” Nanophotonics 9, 1287–1320 (2020).
[Crossref]

A. Honardoost, K. Abdelsalam, and S. Fathpour, “Rejuvenating a versatile photonic material: thin-film lithium niobate,” Laser Photon. Rev. 14, 2000088 (2020).
[Crossref]

J.-X. Zhou, R.-H. Gao, J. Lin, M. Wang, W. Chu, W.-B. Li, D.-F. Yin, L. Deng, Z.-W. Fang, J.-H. Zhang, R.-B. Wu, and Y. Cheng, “Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching,” Chin. Phys. Lett. 37, 084201 (2020).
[Crossref]

J. Ling, Y. He, R. Luo, M. Li, H. Liang, and Q. Lin, “Athermal lithium niobate microresonator,” Opt. Express 28, 21682–21691 (2020).
[Crossref]

Z. Yu, Y. Tong, H. K. Tsang, and X. Sun, “High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum,” Nat. Commun. 11, 2602 (2020).
[Crossref]

G. Qian, L. Huang, F. Zhou, J. Tang, X. Chen, Y. Kong, and T. Chen, “Design and fabrication of cantilevered fiber-to-waveguide mode size converter for thin-film lithium niobate photonic integrated circuits,” Proc. SPIE 11455, 1145587 (2020).
[Crossref]

N. Yao, J. Zhou, R. Gao, J. Lin, M. Wang, Y. Cheng, W. Fang, and L. Tong, “Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber,” Opt. Express 28, 12416–12423 (2020).
[Crossref]

Y. Li, T. Lan, J. Li, and Z. Wang, “High-efficiency edge-coupling based on lithium niobate on an insulator wire waveguide,” Appl. Opt. 59, 6694–6701 (2020).
[Crossref]

S. Wang, L. Yang, R. Cheng, Y. Xu, M. Shen, R. L. Cone, C. W. Thiel, and H. X. Tang, “Incorporation of erbium ions into thin-film lithium niobate integrated photonics,” Appl. Phys. Lett. 116, 151103 (2020).
[Crossref]

S. Khan, S. M. Buckley, J. Chiles, R. P. Mirin, S. W. Nam, and J. M. Shainline, “Low-loss, high-bandwidth fiber-to-chip coupling using capped adiabatic tapered fibers,” APL Photon. 5, 056101 (2020).
[Crossref]

X. Yin, J. Jin, M. Soljačić, C. Peng, and B. Zhen, “Observation of topologically enabled unidirectional guided resonances,” Nature 580, 467–471 (2020).
[Crossref]

X. Ye, S. Liu, Y. Chen, Y. Zheng, and X. Chen, “Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching,” Opt. Lett. 45, 523–526 (2020).
[Crossref]

2019 (75)

Z. Fang, S. Haque, J. Lin, R. Wu, J. Zhang, M. Wang, J. Zhou, M. Rafa, T. Lu, and Y. Cheng, “Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator,” Opt. Lett. 44, 1214–1217 (2019).
[Crossref]

J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials (Basel) 9, 1218 (2019).
[Crossref]

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, and Y. Cheng, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, and P. Minzioni, “Coupling strategies for silicon photonics integrated chips,” Photon. Res. 7, 201–239 (2019).
[Crossref]

M. Li, H. Liang, R. Luo, Y. He, and Q. Lin, “High-Q 2D lithium niobate photonic crystal slab nanoresonators,” Laser Photon. Rev. 13, 1800228 (2019).
[Crossref]

A. Kar, M. Bahadori, S. Gong, and L. L. Goddard, “Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate,” Opt. Express 27, 15856–15867 (2019).
[Crossref]

I. Krasnokutska, J.-L. J. Tambasco, and A. Peruzzo, “Nanostructuring of LNOI for efficient edge coupling,” Opt. Express 27, 16578–16585 (2019).
[Crossref]

M. Jin, J.-Y. Chen, Y. M. Sua, and Y.-P. Huang, “High-extinction electro-optic modulation on lithium niobate thin film,” Opt. Lett. 44, 1265–1268 (2019).
[Crossref]

L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, and M. Loncar, “Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits,” Opt. Lett. 44, 2314–2317 (2019).
[Crossref]

I. Krasnokutska, R. J. Chapman, J.-L. J. Tambasco, and A. Peruzzo, “High coupling efficiency grating couplers on lithium niobate on insulator,” Opt. Express 27, 17681–17685 (2019).
[Crossref]

Z. Yu, X. Xi, J. Ma, H. K. Tsang, C.-L. Zou, and X. Sun, “Photonic integrated circuits with bound states in the continuum,” Optica 6, 1342–1348 (2019).
[Crossref]

A. N. R. Ahmed, S. Shi, M. Zablocki, P. Yao, and D. W. Prather, “Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator,” Opt. Lett. 44, 618–621 (2019).
[Crossref]

T. Jin, J. Zhou, and P. T. Lin, “Mid-infrared electro-optical modulation using monolithically integrated titanium dioxide on lithium niobate optical waveguides,” Sci. Rep. 9, 15130 (2019).
[Crossref]

L. Cai, A. Mahmoud, and G. Piazza, “Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications,” Opt. Express 27, 9794–9802 (2019).
[Crossref]

M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Lončar, “Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides,” Opt. Lett. 44, 1222–1225 (2019).
[Crossref]

J. Lin, J. Zhou, R. Wu, M. Wang, Z. Fang, W. Chu, J. Zhang, L. Qiao, and Y. Cheng, “High-precision propagation-loss measurement of single-mode optical waveguides on lithium niobate on insulator,” Micromachines (Basel) 10, 612 (2019).
[Crossref]

M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator,” Quantum Eng. 1, e9 (2019).
[Crossref]

R. Wu, J. Lin, M. Wang, Z. Fang, W. Chu, J. Zhang, J. Zhou, and Y. Cheng, “Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanical polish,” Opt. Lett. 44, 4698–4701 (2019).
[Crossref]

M. Rüsing, P. O. Weigel, J. Zhao, and S. Mookherjea, “Towards 3D integrated photonics including lithium niobate thin films,” IEEE Nanotechnol. Mag. 13(4), 18–33 (2019).
[Crossref]

J.-Y. Chen, Z.-H. Ma, Y. M. Sua, Z. Li, C. Tang, and Y.-P. Huang, “Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings,” Optica 6, 1244–1245 (2019).
[Crossref]

J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W,” Optica 6, 1455–1460 (2019).
[Crossref]

J.-Y. Chen, Y. M. Sua, Z.-H. Ma, C. Tang, Z. Li, and Y.-P. Huang, “Efficient parametric frequency conversion in lithium niobate nanophotonic chips,” OSA Continuum 2, 2914–2924 (2019).
[Crossref]

B. S. Elkus, K. Abdelsalam, A. Rao, V. Velev, S. Fathpour, P. Kumar, and G. S. Kanter, “Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides,” Opt. Express 27, 38521–38531 (2019).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “Self-starting bi-chromatic LiNbO3 soliton microcomb,” Optica 6, 1138–1144 (2019).
[Crossref]

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10, 978 (2019).
[Crossref]

T. Ding, Y. Zheng, and X. Chen, “On-chip Solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator (PPLNOI) ridge waveguide,” J. Lightwave Technol. 37, 1296–1300 (2019).
[Crossref]

B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Lončar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6, 380–384 (2019).
[Crossref]

M. Smit, K. Williams, and J. van der Tol, “Past, present, and future of InP-based photonic integration,” APL Photon. 4, 050901 (2019).
[Crossref]

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An integrated low-voltage broadband lithium niobate phase modulator,” IEEE Photon. Technol. Lett. 31, 889–892 (2019).
[Crossref]

A. N. P. An, C. H. U. Hangran, C. H. Z. Eng, and J. I. X. Ia, “Fundamental mode hybridization in a thin film lithium niobate ridge waveguide,” Opt. Express 27, 35659–35669 (2019).
[Crossref]

W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” Optica 6, 845–853 (2019).
[Crossref]

M. Li, H. Liang, R. Luo, Y. He, J. Ling, and Q. Lin, “Photon-level tuning of photonic nanocavities,” Optica 6, 860–863 (2019).
[Crossref]

M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S. Fan, and M. Lončar, “Electronically programmable photonic molecule,” Nat. Photonics 13, 36–40 (2019).
[Crossref]

S. Liu, Y. Zheng, Z. Fang, X. Ye, Y. Cheng, and X. Chen, “Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes,” Opt. Lett. 44, 1456–1459 (2019).
[Crossref]

J. Jian, M. Xu, L. Liu, Y. Luo, J. Zhang, L. Liu, L. Zhou, H. Chen, S. Yu, and X. Cai, “High modulation efficiency lithium niobate Michelson interferometer modulator,” Opt. Express 27, 18731–18739 (2019).
[Crossref]

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Z. Gong, X. Liu, Y. Xu, M. Xu, J. B. Surya, J. Lu, A. Bruch, C. Zou, and H. X. Tang, “Soliton microcomb generation at 2 µm in z-cut lithium niobate microring resonators,” Opt. Lett. 44, 3182–3185 (2019).
[Crossref]

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Lončar, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” Optica 6, 1498–1505 (2019).
[Crossref]

L. Zhang, D. Zheng, W. Li, F. Bo, F. Gao, Y. Kong, G. Zhang, and J. Xu, “Microdisk resonators with lithium-niobate film on silicon substrate,” Opt. Express 27, 33662–33669 (2019).
[Crossref]

M. Rüsing, J. Zhao, and S. Mookherjea, “Second harmonic microscopy of poled x-cut thin film lithium niobate: understanding the contrast mechanism,” J. Appl. Phys. 126, 114105 (2019).
[Crossref]

J. Zhao, M. Rüsing, and S. Mookherjea, “Optical diagnostic methods for monitoring the poling of thin-film lithium niobate waveguides,” Opt. Express 27, 12025–12038 (2019).
[Crossref]

A. Rao, K. Abdelsalam, T. Sjaardema, A. Honardoost, G. F. Camacho-Gonzalez, and S. Fathpour, “Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600%W-1cm-2,” Opt. Express 27, 25920–25930 (2019).
[Crossref]

A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, and A. Mitchell, “Improved second harmonic performance in periodically poled LNOI waveguides through engineering of lateral leakage,” Opt. Express 27, 23919–23928 (2019).
[Crossref]

M. Minkov, D. Gerace, and S. Fan, “Doubly resonant χ(2) nonlinear photonic crystal cavity based on a bound state in the continuum,” Optica 6, 1039–1045 (2019).
[Crossref]

J. T. Nagy and R. M. Reano, “Reducing leakage current during periodic poling of ion-sliced x-cut MgO doped lithium niobate thin films,” Opt. Mater. Express 9, 3146–3155 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev. 13, 1800288 (2019).
[Crossref]

A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
[Crossref]

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13, 146–157 (2019).
[Crossref]

R. V. Kochanov, I. E. Gordon, L. S. Rothman, K. P. Shine, S. W. Sharpe, T. J. Johnson, T. J. Wallington, J. J. Harrison, P. F. Bernath, M. Birk, G. Wagner, K. Le Bris, I. Bravo, and C. Hill, “REPRINT OF: Infrared absorption cross-sections in HITRAN2016 and beyond: expansion for climate, environment, and atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 238, 106708 (2019).
[Crossref]

L. Yuan, Q. Lin, A. Zhang, M. Xiao, X. Chen, and S. Fan, “Photonic gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions,” Phys. Rev. Lett. 122, 083903 (2019).
[Crossref]

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, “Experimental band structure spectroscopy along a synthetic dimension,” Nat. Commun. 10, 3122 (2019).
[Crossref]

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13, 158–169 (2019).
[Crossref]

S. J. Whiteley, G. Wolfowicz, C. P. Anderson, A. Bourassa, H. Ma, M. Ye, G. Koolstra, K. J. Satzinger, M. V. Holt, F. J. Heremans, A. N. Cleland, D. I. Schuster, G. Galli, and D. D. Awschalom, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nat. Phys. 15, 490–495 (2019).
[Crossref]

L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y. I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, “Phononic band structure engineering for high- Q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12, 014022 (2019).
[Crossref]

H. C. Frankis, K. M. Kiani, D. Su, R. Mateman, A. Leinse, and J. D. B. Bradley, “High-Q tellurium-oxide-coated silicon nitride microring resonators,” Opt. Lett. 44, 118–121 (2019).
[Crossref]

D. B. Sohn and G. Bahl, “Direction reconfigurable nonreciprocal acousto-optic modulator on chip,” APL Photon. 4, 126103 (2019).
[Crossref]

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photon. Res. 7, 1003–1013 (2019).
[Crossref]

D. Waldburger, A. S. Mayer, C. G. E. Alfieri, J. Nürnberg, A. R. Johnson, X. Ji, A. Klenner, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Tightly locked optical frequency comb from a semiconductor disk laser,” Opt. Express 27, 1786–1797 (2019).
[Crossref]

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

J. Lu, J. B. Surya, X. Liu, Y. Xu, and H. X. Tang, “Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides,” Opt. Lett. 44, 1492–1495 (2019).
[Crossref]

R. Cheng, S. Wang, and H. X. Tang, “Superconducting nanowire single-photon detectors fabricated from atomic-layer- deposited NbN,” Appl. Phys. Lett. 115, 241101 (2019).
[Crossref]

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photon. 4, 056103 (2019).
[Crossref]

B. Desiatov and M. Lončar, “Silicon photodetector for integrated lithium niobate photonics,” Appl. Phys. Lett. 115, 121108 (2019).
[Crossref]

A. Honardoost, F. A. Juneghani, R. Safian, and S. Fathpour, “Towards subterahertz bandwidth ultracompact lithium niobate electrooptic modulators,” Opt. Express 27, 6495–6501 (2019).
[Crossref]

R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, and D. Englund, “Large-scale optical neural networks based on photoelectric multiplication,” Phys. Rev. X 9, 021032 (2019).
[Crossref]

T. Zhong and P. Goldner, “Emerging rare-earth doped material platforms for quantum nanophotonics,” Nanophotonics 8, 2003–2015 (2019).
[Crossref]

D. White, A. Branny, R. J. Chapman, R. Picard, M. Brotons-Gisbert, A. Boes, A. Peruzzo, C. Bonato, and B. D. Gerardot, “Atomically-thin quantum dots integrated with lithium niobate photonic chips,” Opt. Mater. Express 9, 441–448 (2019).
[Crossref]

F. Kaneda and P. G. Kwiat, “High-efficiency single-photon generation via large-scale active time multiplexing,” Sci. Adv. 5, eaaw8586 (2019).
[Crossref]

S. Slussarenko and G. J. Pryde, “Photonic quantum information processing: a concise review,” Appl. Phys. Rev. 6, 041303 (2019).
[Crossref]

H.-H. Lu, J. M. Lukens, B. P. Williams, P. Imany, N. A. Peters, A. M. Weiner, and P. Lougovski, “A controlled-NOT gate for frequency-bin qubits,” npj Quantum Inf. 5, 24 (2019).
[Crossref]

J. Zhang, G. Muliuk, J. Juvert, S. Kumari, J. Goyvaerts, B. Haq, C. Op de Beeck, B. Kuyken, G. Morthier, D. Van Thourhout, R. Baets, G. Lepage, P. Verheyen, J. Van Campenhout, A. Gocalinska, J. O’Callaghan, E. Pelucchi, K. Thomas, B. Corbett, A. J. Trindade, and G. Roelkens, “III-V-on-Si photonic integrated circuits realized using micro-transfer-printing,” APL Photon. 4, 110803 (2019).
[Crossref]

2018 (46)

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Lončar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113, 221102 (2018).
[Crossref]

J. Zhang, B. Haq, J. O’Callaghan, A. Gocalinska, E. Pelucchi, A. J. Trindade, B. Corbett, G. Morthier, and G. Roelkens, “Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser,” Opt. Express 26, 8821–8830 (2018).
[Crossref]

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-power photodiodes with 65 GHz bandwidth heterogeneously integrated onto silicon-on-insulator nano-waveguides,” IEEE J. Sel. Top. Quantum Electron. 24, 6000206 (2018).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophotonic processors,” Optica 5, 1623–1631 (2018).
[Crossref]

C. Joshi, A. Farsi, C. Clemmen, S. Ramelow, and A. Gaeta, “Frequency multiplexing for quasi-deterministic heralded single-photon sources,” Nat. Commun. 9, 847 (2018).
[Crossref]

D. J. P. Ellis, A. J. Bennett, C. Dangel, J. P. Lee, J. P. Griffiths, T. A. Mitchell, T.-K. Paraiso, P. Spencer, D. A. Ritchie, and A. J. Shields, “Independent indistinguishable quantum light sources on a reconfigurable photonic integrated circuit,” Appl. Phys. Lett. 112, 211104 (2018).
[Crossref]

S. Ferrari, C. Schuck, and W. Pernice, “Waveguide-integrated superconducting nanowire single-photon detectors,” Nanophotonics 7, 1725–1758 (2018).
[Crossref]

E. Smirnov, A. Golikov, P. Zolotov, V. Kovalyuk, M. Lobino, B. Voronov, A. Korneev, and G. Goltsman, “Superconducting nanowire single-photon detector on lithium niobate,” J. Phys. Conf. Ser. 1124, 051025 (2018).
[Crossref]

Y. Okawachi, M. Yu, J. Cardenas, X. Ji, A. Klenner, M. Lipson, and A. L. Gaeta, “Carrier envelope offset detection via simultaneous supercontinuum and second-harmonic generation in a silicon nitride waveguide,” Opt. Lett. 43, 4627–4630 (2018).
[Crossref]

M. Mahmoud, A. Mahmoud, L. Cai, M. Khan, T. Mukherjee, J. Bain, and G. Piazza, “Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes,” Opt. Express 26, 25060–25075 (2018).
[Crossref]

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 µm to beyond 2.4 µm,” Light Sci. Appl. 7, 17131 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photonics 12, 91–97 (2018).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

L. Yuan, M. Xiao, Q. Lin, and S. Fan, “Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation,” Phys. Rev. B 97, 104105 (2018).
[Crossref]

L. Yuan, Q. Lin, M. Xiao, and S. Fan, “Synthetic dimension in photonics,” Optica 5, 1396–1405 (2018).
[Crossref]

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

Y. He, H. Liang, R. Luo, M. Li, and Q. Lin, “Dispersion engineered high quality lithium niobate microring resonators,” Opt. Express 26, 16315–16322 (2018).
[Crossref]

L. Ge, Y. Chen, H. Jiang, G. Li, B. Zhu, Y. Liu, and X. Chen, “Broadband quasi-phase matching in a MgO:PPLN thin film,” Photon. Res. 6, 954–958 (2018).
[Crossref]

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China. Phys. Mech. Astron. 61, 114211 (2018).
[Crossref]

R. Wolf, Y. Jia, S. Bonaus, C. S. Werner, S. J. Herr, I. Breunig, K. Buse, and H. Zappe, “Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries,” Optica 5, 872–875 (2018).
[Crossref]

J.-Y. Chen, Y. M. Sua, H. Fan, and Y.-P. Huang, “Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics,” OSA Continuum 1, 229–242 (2018).
[Crossref]

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24, 3400114 (2018).
[Crossref]

A. Honardoost, R. Safian, A. Rao, and S. Fathpour, “High-speed modeling of ultracompact electrooptic modulators,” J. Lightwave Technol. 36, 5893–5902 (2018).
[Crossref]

L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
[Crossref]

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

M. R. Escalé, D. Pohl, A. Sergeyev, and R. Grange, “Extreme electro-optic tuning of Bragg mirrors integrated in lithium niobate nanowaveguides,” Opt. Lett. 43, 1515–1518 (2018).
[Crossref]

X. P. Li, K. X. Chen, and L. F. Wang, “Compact and electro-optic tunable interleaver in lithium niobate thin film,” Opt. Lett. 43, 3610–3613 (2018).
[Crossref]

T.-J. Lu, M. Fanto, H. Choi, P. Thomas, J. Steidle, S. Mouradian, W. Kong, D. Zhu, H. Moon, K. Berggren, J. Kim, M. Soltani, S. Preble, and D. Englund, “Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum,” Opt. Express 26, 11147–11160 (2018).
[Crossref]

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness,” Nanomaterials (Basel) 8, 910 (2018).
[Crossref]

R. Wolf, I. Breunig, H. Zappe, and K. Buse, “Scattering-loss reduction of ridge waveguides by sidewall polishing,” Opt. Express 26, 19815–19820 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Express 26, 23728–23739 (2018).
[Crossref]

A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26, 14810–14816 (2018).
[Crossref]

S. Y. Siew, E. J. H. Cheung, H. Liang, A. Bettiol, N. Toyoda, B. Alshehri, E. Dogheche, and A. J. Danner, “Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening,” Opt. Express 26, 4421–4430 (2018).
[Crossref]

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 12, 1700256 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref]

I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26, 897–904 (2018).
[Crossref]

A. Rao and S. Fathpour, “Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics,” IEEE J. Sel. Top. Quantum Electron. 24, 8200912 (2018).
[Crossref]

J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26, 29651–29658 (2018).
[Crossref]

J. C. C. Mak, W. D. Sacher, H. Ying, X. Luo, P. G.-Q. Lo, and J. K. S. Poon, “Multi-layer silicon nitride-on-silicon polarization-independent grating couplers,” Opt. Express 26, 30623–30633 (2018).
[Crossref]

L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y.-F. Xiao, “High-Q chaotic lithium niobate microdisk cavity,” Opt. Lett. 43, 2917–2920 (2018).
[Crossref]

R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43, 4116–4119 (2018).
[Crossref]

2017 (42)

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
[Crossref]

Z. Fang, Y. Xu, M. Wang, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “Monolithic integration of a lithium niobate microresonator with a free-standing waveguide using femtosecond laser assisted ion beam writing,” Sci. Rep. 7, 45610 (2017).
[Crossref]

S. Liu, Y. Zheng, and X. Chen, “Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk,” Opt. Lett. 42, 3626–3629 (2017).
[Crossref]

H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4, 1251–1258 (2017).
[Crossref]

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photon. J. 9, 6600208 (2017).
[Crossref]

M. A. Baghban, J. Schollhammer, C. Errando-Herranz, K. B. Gylfason, and K. Gallo, “Bragg gratings in thin-film LiNbO3 waveguides,” Opt. Express 25, 32323–32332 (2017).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref]

Z. Chen, R. Peng, Y. Wang, H. Zhu, and H. Hu, “Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector,” Opt. Mater. Express 7, 4010–4017 (2017).
[Crossref]

Z. Chen, Y. Wang, Y. Jiang, R. Kong, and H. Hu, “Grating coupler on single-crystal lithium niobate thin film,” Opt. Mater. 72, 136–139 (2017).
[Crossref]

Y. Wang, Z. Chen, L. Cai, Y. Jiang, H. Zhu, and H. Hu, “Amorphous silicon-lithium niobate thin film strip-loaded waveguides,” Opt. Mater. Express 7, 4018–4028 (2017).
[Crossref]

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42, 803–806 (2017).
[Crossref]

R. Wolf, I. Breunig, H. Zappe, and K. Buse, “Cascaded second-order optical nonlinearities in on-chip micro rings,” Opt. Express 25, 29927–29933 (2017).
[Crossref]

S.-M. Zhang, Y.-P. Jiang, and Y. Jiao, “Clean waveguides in lithium niobate thin film formed by He ion implantation,” Appl. Phys. B 123, 220 (2017).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

M. J. R. Heck, “Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics 6, 93–107 (2017).
[Crossref]

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref]

C. Qin, H. Lu, B. Ercan, S. Li, and S. J. B. Yoo, “Single-tone optical frequency shifting and nonmagnetic optical isolation by electro-optical emulation of a rotating half-wave plate in a traveling-wave lithium niobate waveguide,” IEEE Photon. J. 9, 6600913 (2017).
[Crossref]

R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, “On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator,” Opt. Express 25, 24531–24539 (2017).
[Crossref]

Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photon. Res. 5, 623–628 (2017).
[Crossref]

C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref]

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

L. Yuan, D.-W. Wang, and S. Fan, “Synthetic gauge potential and effective magnetic field in a Raman medium undergoing molecular modulation,” Phys. Rev. A 95, 033801 (2017).
[Crossref]

G. Li, Y. Chen, H. Jiang, and X. Chen, “Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band,” Opt. Lett. 42, 939–942 (2017).
[Crossref]

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6, e17076 (2017).
[Crossref]

M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, and M. Loncar, “Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators,” Phys. Rev. A 96, 043808 (2017).
[Crossref]

J. M. Lukens and P. Lougovski, “Frequency-encoded photonic qubits for scalable quantum information processing,” Optica 4, 8–16 (2017).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
[Crossref]

Y. Okawachi, M. Yu, J. Cardenas, X. Ji, M. Lipson, and A. L. Gaeta, “Coherent, directional supercontinuum generation,” Opt. Lett. 42, 4466–4469 (2017).
[Crossref]

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref]

D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42, 2314–2317 (2017).
[Crossref]

M. A. G. Porcel, F. Schepers, J. P. Epping, T. Hellwig, M. Hoekman, R. G. Heideman, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, C. Fallnich, and K.-J. Boller, “Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths,” Opt. Express 25, 1542–1554 (2017).
[Crossref]

J. P. Höpker, M. Bartnick, E. Meyer-Scott, F. Thiele, T. Meier, T. Bartley, S. Krapick, N. M. Montaut, M. Santandrea, H. Herrmann, S. Lengeling, R. Ricken, V. Quiring, A. E. Lita, V. B. Verma, T. Gerrits, S. W. Nam, and C. Silberhorn, “Towards integrated superconducting detectors on lithium niobate waveguides,” Proc. SPIE 10358, 1035809 (2017).
[Crossref]

A. E. Dane, A. N. McCaughan, D. Zhu, Q. Zhao, C.-S. Kim, N. Calandri, A. Agarwal, F. Bellei, and K. K. Berggren, “Bias sputtered NbN and superconducting nanowire devices,” Appl. Phys. Lett. 111, 122601 (2017).
[Crossref]

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17, 7394–7400 (2017).
[Crossref]

N. Sinclair, D. Oblak, C. W. Thiel, R. L. Cone, and W. Tittel, “Properties of a rare-earth-ion-doped waveguide at sub-kelvin temperatures for quantum signal processing,” Phys. Rev. Lett. 118, 100504 (2017).
[Crossref]

H. Jiang, R. Luo, H. Liang, X. Chen, Y. Chen, and Q. Lin, “Fast response of photorefraction in lithium niobate microresonators,” Opt. Lett. 42, 3267–3270 (2017).
[Crossref]

X. Sun, H. Liang, R. Luo, W. C. Jiang, X.-C. Zhang, and Q. Lin, “Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators,” Opt. Express 25, 13504–13516 (2017).
[Crossref]

M. G. Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 1–6 (2017).
[Crossref]

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
[Crossref]

2016 (30)

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref]

N. A. Tyler, J. Barreto, G. E. Villarreal-Garcia, D. Bonneau, D. Sahin, J. L. O’Brien, and M. G. Thompson, “Modelling superconducting nanowire single photon detectors in a waveguide cavity,” Opt. Express 24, 8797–8808 (2016).
[Crossref]

A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24, 11043–11053 (2016).
[Crossref]

T. Hansson, F. Leo, M. Erkintalo, J. Anthony, S. Coen, I. Ricciardi, M. De Rosa, and S. Wabnitz, “Single envelope equation modeling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearities,” J. Opt. Soc. Am. B 33, 1207–1215 (2016).
[Crossref]

M. B. Tellekamp, J. C. Shank, M. S. Goorsky, and W. A. Doolittle, “Molecular beam epitaxy growth of high crystalline quality LiNbO3,” J. Electron. Mater. 45, 6292–6299 (2016).
[Crossref]

X. Liu, M. Pu, B. Zhou, C. J. Krückel, A. Fülöp, V. Torres-Company, and M. Bache, “Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide,” Opt. Lett. 41, 2719–2722 (2016).
[Crossref]

M. Leidinger, B. Sturman, K. Buse, and I. Breunig, “Strong forward-backward asymmetry of stimulated Raman scattering in lithium-niobate-based whispering gallery resonators,” Opt. Lett. 41, 2823–2826 (2016).
[Crossref]

A. Rueda, F. Sedlmeir, M. C. Collodo, U. Vogl, B. Stiller, G. Schunk, D. V. Strekalov, C. Marquardt, J. M. Fink, O. Painter, G. Leuchs, and H. G. L. Schwefel, “Efficient microwave to optical photon conversion: an electro-optical realization,” Optica 3, 597–604 (2016).
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

L. Yuan and S. Fan, “Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator,” Optica 3, 1014–1018 (2016).
[Crossref]

Q. Lin, M. Xiao, L. Yuan, and S. Fan, “Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension,” Nat. Commun. 7, 13731 (2016).
[Crossref]

L. Yuan, Y. Shi, and S. Fan, “Photonic gauge potential in a system with a synthetic frequency dimension,” Opt. Lett. 41, 741–744 (2016).
[Crossref]

T. Ozawa, H. M. Price, N. Goldman, O. Zilberberg, and I. Carusotto, “Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics,” Phys. Rev. A 93, 043827 (2016).
[Crossref]

M. Minkov and V. Savona, “Haldane quantum Hall effect for light in a dynamically modulated array of resonators,” Optica 3, 200–206 (2016).
[Crossref]

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18, 123002 (2016).
[Crossref]

J. Fürst, B. Sturman, K. Buse, and I. Breunig, “Whispering gallery resonators with broken axial symmetry: theory and experiment,” Opt. Express 24, 20143–20155 (2016).
[Crossref]

X. Guo, C.-L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3, 1126–1131 (2016).
[Crossref]

S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib microring resonators in lithium niobate on insulator,” IEEE Photon. Technol. Lett. 28, 573–576 (2016).
[Crossref]

W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Rep. 6, 36920 (2016).
[Crossref]

R. Stabile, A. Albores-Mejia, A. Rohit, and K. A. Williams, “Integrated optical switch matrices for packet data networks,” Microsyst. Nanoeng. 2, 15042 (2016).
[Crossref]

E. A. Douglas, P. Mahony, A. Starbuck, A. Pomerene, D. C. Trotter, and C. T. DeRose, “Effect of precursors on propagation loss for plasma-enhanced chemical vapor deposition of SiNx:H waveguides,” Opt. Mater. Express 6, 2892–2903 (2016).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
[Crossref]

A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24, 29941–29947 (2016).
[Crossref]

A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24, 15590–15595 (2016).
[Crossref]

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41, 5700–5703 (2016).
[Crossref]

L. Cai, Y. Kang, and H. Hu, “Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film,” Opt. Express 24, 4640–4647 (2016).
[Crossref]

M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24, 1386–1391 (2016).
[Crossref]

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photon. Technol. Lett. 28, 736–739 (2016).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

2015 (24)

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

T. G. Tiecke, K. P. Nayak, J. D. Thompson, T. Peyronel, N. P. de Leon, V. Vuletić, and M. D. Lukin, “Efficient fiber-optical interface for nanophotonic devices,” Optica 2, 70–75 (2015).
[Crossref]

C.-L. Zou, J.-M. Cui, F.-W. Sun, X. Xiong, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators,” Laser Photon. Rev. 9, 114–119 (2015).
[Crossref]

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23, 22746–22752 (2015).
[Crossref]

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photon. Technol. Lett. 28, 736–739 (2015).
[Crossref]

S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23, 24212–24219 (2015).
[Crossref]

J. Lv, Y. Cheng, W. Yuan, X. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5, 1274–1280 (2015).
[Crossref]

L. Cai, R. Kong, Y. Wang, and H. Hu, “Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film,” Opt. Express 23, 29211–29221 (2015).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

R. Geiss, J. Brandt, H. Hartung, A. Tünnermann, T. Pertsch, E.-B. Kley, and F. Schrempel, “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching,” J. Vac. Sci. Technol. B 33, 010601 (2015).
[Crossref]

L. Cai, Y. Wang, and H. Hu, “Low-loss waveguides in a single-crystal lithium niobate thin film,” Opt. Lett. 40, 3013–3016 (2015).
[Crossref]

M. Bazzan and C. Sada, “Optical waveguides in lithium niobate: recent developments and applications,” Appl. Phys. Rev. 2, 040603 (2015).
[Crossref]

L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23, 13255–13264 (2015).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China. Ser. G 58, 114209 (2015).
[Crossref]

L. Yuan and S. Fan, “Three-dimensional dynamic localization of light from a time-dependent effective gauge field for photons,” Phys. Rev. Lett. 114, 243901 (2015).
[Crossref]

L. Yuan and S. Fan, “Topologically nontrivial Floquet band structure in a system undergoing photonic transitions in the ultrastrong-coupling regime,” Phys. Rev. A 92, 053822 (2015).
[Crossref]

V. S. Gorelik and P. P. Sverbil’, “Raman scattering by longitudinal and transverse optical vibrations in lithium niobate single crystals,” Inorg. Mater. 51, 1104–1110 (2015).
[Crossref]

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duvall, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, and B. J. Eggleton, “Midinfrared supercontinuum generation from 2 to 6 µm in a silicon nanowire,” Optica 2, 797–802 (2015).
[Crossref]

A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120 (2015).
[Crossref]

S. Sanna, S. Neufeld, M. Rüsing, G. Berth, A. Zrenner, and W. G. Schmidt, “Raman scattering efficiency in LiTaO3 and LiNbO3 crystals,” Phys. Rev. B 91, 224302 (2015).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref]

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photonics 9, 388–392 (2015).
[Crossref]

2014 (12)

H.-C. Huang, J. I. Dadap, I. P. Herman, H. Bakhru, and R. M. Osgood, “Micro-Raman spectroscopic visualization of lattice vibrations and strain in He+-implanted single-crystal LiNbO3,” Opt. Mater. Express 4, 338–345 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8, 701–705 (2014).
[Crossref]

Q. Lin and S. Fan, “Light guiding by effective gauge field for photons,” Phys. Rev. X 4, 031031 (2014).
[Crossref]

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

R. Takigawa, E. Higurashi, T. Kawanishi, and T. Asano, “Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method,” Opt. Express 22, 27733–27738 (2014).
[Crossref]

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014).
[Crossref]

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,” Opt. Lett. 39, 5348–5350 (2014).
[Crossref]

L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
[Crossref]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

2013 (11)

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
[Crossref]

L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21, 27003–27010 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

S. T. Popescu, A. Petris, and V. I. Vlad, “Interferometric measurement of the pyroelectric coefficient in lithium niobate,” J. Appl. Phys. 113, 043101 (2013).
[Crossref]

J. A. I. Fuste and M. C. S. Blanco, “Bandwidth–length trade-off figures of merit for electro-optic traveling wave modulators,” Opt. Lett. 38, 1548–1550 (2013).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

K. Fang and S. Fan, “Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation,” Phys. Rev. Lett. 111, 203901 (2013).
[Crossref]

G. Lin, J. U. Fürst, D. V. Strekalov, and N. Yu, “Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators,” Appl. Phys. Lett. 103, 181107 (2013).
[Crossref]

K. E. Webb, Y. Q. Xu, M. Erkintalo, and S. G. Murdoch, “Generalized dispersive wave emission in nonlinear fiber optics,” Opt. Lett. 38, 151–153 (2013).
[Crossref]

H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express 3, 126–142 (2013).
[Crossref]

2012 (12)

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
[Crossref]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012).
[Crossref]

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
[Crossref]

K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108, 153901 (2012).
[Crossref]

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express 20, 4032–4038 (2012).
[Crossref]

D. Jun, J. Wei, C. E. Png, S. Guangyuan, J. Son, H. Yang, and A. J. Danner, “Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas,” J. Vac. Sci. Technol. B 30, 011208 (2012).
[Crossref]

T.-J. Wang, J.-Y. He, C.-A. Lee, and H. Niu, “High-quality LiNbO3 microdisk resonators by undercut etching and surface tension reshaping,” Opt. Express 20, 28119–28124 (2012).
[Crossref]

2011 (11)

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29, 021205 (2011).
[Crossref]

E. Saitoh, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “A design method of lithium niobate on insulator ridge waveguides without leakage loss,” Opt. Express 19, 15833–15842 (2011).
[Crossref]

Y. S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, W.-G. Lee, and W. H. Steier, “Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices,” Opt. Lett. 36, 1119–1121 (2011).
[Crossref]

G. Ulliac, B. Guichardaz, J.-Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88, 2417–2419 (2011).
[Crossref]

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D 44, 305101 (2011).
[Crossref]

J. P. Salvestrini, L. Guilbert, M. Fontana, M. Abarkan, and S. Gille, “Analysis and control of the DC drift in LiNbO3-based Mach-Zehnder modulators,” J. Lightwave Technol. 29, 1522–1534 (2011).
[Crossref]

M. Tsang, “Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields,” Phys. Rev. A 84, 043845 (2011).
[Crossref]

C. W. Thiel, T. Böttger, and R. L. Cone, “Rare-earth-doped materials for applications in quantum information storage and signal processing,” J. Lumin. 131, 353–361 (2011).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

S. Sanna, G. Berth, W. Hahn, A. Widhalm, A. Zrenner, and W. G. Schmidt, “Localised phonon modes at LiNbO3 (0001) surfaces,” Ferroelectrics 419, 1–8 (2011).
[Crossref]

C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011).
[Crossref]

2010 (10)

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[Crossref]

P. S. Zelenovskiy, V. Y. Shur, P. Bourson, M. D. Fontana, D. K. Kuznetsov, and E. A. Mingaliev, “Raman study of neutral and charged domain walls in lithium niobate,” Ferroelectrics 398, 34–41 (2010).
[Crossref]

D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
[Crossref]

S. Wabnitz and V. V. Kozlov, “Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media,” J. Opt. Soc. Am. B 27, 1707–1711 (2010).
[Crossref]

K. Vu and S. Madden, “Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 2.8 dB/cm internal gain,” Opt. Express 18, 19192–19200 (2010).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

M. Tsang, “Cavity quantum electro-optics,” Phys. Rev. A 81, 063837 (2010).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref]

H. Hu, L. Gui, R. Ricken, and W. Sohler, “Towards nonlinear photonic wires in lithium niobate,” Proc. SPIE 7604, 76040R (2010).
[Crossref]

2009 (6)

L. Gui, H. Hu, M. Garcia-Granda, and W. Sohler, “Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation,” Opt. Express 17, 3923–3928 (2009).
[Crossref]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17, 24261–24268 (2009).
[Crossref]

A. A. Savchenkov, W. Liang, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical single-sideband modulator with complete sideband suppression,” Opt. Lett. 34, 1300–1302 (2009).
[Crossref]

D. Janner, D. Tulli, M. García-Granda, M. Belmonte, and V. Pruneri, “Micro-structured integrated electro-optic LiNbO3 modulators,” Laser Photon. Rev. 3, 301–313 (2009).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

2008 (6)

A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423–1431 (2008).
[Crossref]

M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express 16, 3273–3287 (2008).
[Crossref]

C.-B. Huang, Z. Jiang, D. Leaird, J. Caraquitena, and A. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2, 227–248 (2008).
[Crossref]

W. D. Sacher and J. K. S. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16, 15741–15753 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
[Crossref]

2007 (9)

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[Crossref]

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett. 19, 417–419 (2007).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res. 37, 449–489 (2007).
[Crossref]

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 19, 312–314 (2007).
[Crossref]

C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, “Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter,” Opt. Express 15, 2548–2554 (2007).
[Crossref]

M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007).
[Crossref]

G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, “Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides,” Opt. Express 15, 5382–5387 (2007).
[Crossref]

Y. Soudagar, F. Bussières, G. Berlín, S. Lacroix, J. M. Fernandez, and N. Godbout, “Cluster-state quantum computing in optical fibers,” J. Opt. Soc. Am. B 24, 226–230 (2007).
[Crossref]

2006 (5)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys. Part 1 45, 8696–8698 (2006).
[Crossref]

T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol. 24, 2311–2317 (2006).
[Crossref]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
[Crossref]

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24, 1012–1015 (2006).
[Crossref]

2005 (5)

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
[Crossref]

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86, 161115 (2005).
[Crossref]

J. Shin, C. Ozturk, S. R. Sakamoto, Y. J. Chiu, and N. Dagli, “Novel T-rail electrodes for substrate removed low-voltage high-speed GaAs/AlGaAs electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 53, 636–643 (2005).
[Crossref]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[Crossref]

2004 (6)

F. Ö. Ilday, K. Beckwitt, Y.-F. Chen, H. Lim, and F. W. Wise, “Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376–383 (2004).
[Crossref]

H. Nagata, N. F. O’Brien, W. R. Bosenberg, G. L. Reiff, and K. R. Voisine, “DC-voltage-induced thermal shift of bias point in LiNbO3 optical modulators,” IEEE Photon. Technol. Lett. 16, 2460–2462 (2004).
[Crossref]

M. C. Wengler, B. Fassbender, E. Soergel, and K. Buse, “Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources,” J. Appl. Phys. 96, 2816–2820 (2004).
[Crossref]

Y. Nakata, S. Gunji, T. Okada, and M. Maeda, “Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties,” Appl. Phys. A 79, 1279–1282 (2004).
[Crossref]

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603–4605 (2004).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

2003 (4)

M. C. Wengler, M. Müller, E. Soergel, and K. Buse, “Poling dynamics of lithium niobate crystals,” Appl. Phys. B 76, 393–396 (2003).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Whispering-gallery-mode electro-optic modulator and photonic microwave receiver,” J. Opt. Soc. Am. B 20, 333–342 (2003).
[Crossref]

S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791–793 (2003).
[Crossref]

2002 (1)

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002).
[Crossref]

2001 (3)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

A. Chowdhury and L. McCaughan, “Figure of merit for near-velocity-matched traveling-wave modulators,” Opt. Lett. 26, 1317–1319 (2001).
[Crossref]

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-Viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90, 5274–5277 (2001).
[Crossref]

2000 (6)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[Crossref]

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “Review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

J. Rams, A. Alcázar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–640 (2000).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

X. Liu, F. O. Ilday, K. Beckwitt, and F. W. Wise, “Femtosecond nonlinear polarization evolution based on cascade quadratic nonlinearities,” Opt. Lett. 25, 1394–1396 (2000).
[Crossref]

1999 (4)

X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett. 82, 4631–4634 (1999).
[Crossref]

L. J. Qian, X. Liu, and F. W. Wise, “Femtosecond Kerr-lens mode locking with negative nonlinear phase shifts,” Opt. Lett. 24, 166–168 (1999).
[Crossref]

X. Liu, L. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2):χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
[Crossref]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

1998 (5)

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73, 735 (1998).
[Crossref]

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[Crossref]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981–1983 (1998).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73, 2293–2295 (1998).
[Crossref]

H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Cryst. Growth 187, 573–576 (1998).
[Crossref]

1997 (3)

1996 (3)

S. K. Korotky and J. J. Veselka, “An RC network analysis of long term Ti:LiNbO3 bias stability,” J. Lightwave Technol. 14, 2687–2697 (1996).
[Crossref]

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

J. Yoon and K. Kim, “Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process,” Appl. Phys. Lett. 68, 2523–2525 (1996).
[Crossref]

1995 (3)

F. Gitmans, Z. Sitar, and P. Günter, “Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy,” Vacuum 46, 939–942 (1995).
[Crossref]

M. Bruel, “Silicon on insulator material technology,” Electron. Lett. 31, 1201–1202 (1995).
[Crossref]

Y. Sakashita and H. Segawa, “Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition,” J. Appl. Phys. 77, 5995–5999 (1995).
[Crossref]

1993 (3)

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[Crossref]

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[Crossref]

K. Ho and J. M. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” IEEE Photon. Technol. Lett. 5, 721–725 (1993).
[Crossref]

1992 (1)

Z. Y. Cheng and C. S. Tsai, “Baseband integrated acousto-optic frequency shifter,” Appl. Phys. Lett. 60, 12–14 (1992).
[Crossref]

1989 (1)

W. K. Chan, A. Yi-Yan, T. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, and J. P. Harbison, “GaAs photodetectors integrated with lithium niobate waveguides,” IEEE Trans. Electron Devices 36, 2627–2628 (1989).
[Crossref]

1986 (1)

R. Gerson, J. F. Kirchhoff, L. E. Halliburton, and D. A. Bryan, “Photoconductivity parameters in lithium niobate,” J. Appl. Phys. 60, 3553–3557 (1986).
[Crossref]

1985 (3)

R. A. Becker, “Circuit effect in LiNbO3 channel-waveguide modulators,” Opt. Lett. 10, 417–419 (1985).
[Crossref]

C. M. Gee, G. D. Thurmond, H. Blauvelt, and H. W. Yen, “Minimizing dc drift in LiNbO3 waveguide devices,” Appl. Phys. Lett. 47, 211–213 (1985).
[Crossref]

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

1982 (1)

R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 30, 1121–1137 (1982).
[Crossref]

1981 (2)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17, 2225–2227 (1981).
[Crossref]

S. Yamada and M. Minakata, “DC drift phenomena in LiNbO3 optical waveguide devices,” Jpn. J. Appl. Phys. 20, 733–737 (1981).
[Crossref]

1975 (1)

N. Ohnishi and T. Iizuka, “Etching study of microdomains in LiNbO3 single crystals,” J. Appl. Phys. 46, 1063–1067 (1975).
[Crossref]

1972 (1)

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[Crossref]

1968 (1)

W. D. Johnston, I. P. Kaminow, and J. G. Bergman, “Stimulated Raman gain coefficients for Li6NbO3, Ba2NaNb5O15, and other materials,” Appl. Phys. Lett. 13, 190–193 (1968).
[Crossref]

1967 (1)

A. S. Barker and R. Loudon, “Dielectric properties and optical phonons in LiNbO3,” Phys. Rev. 158, 433–445 (1967).
[Crossref]

1966 (1)

R. F. Schaufele and M. J. Weber, “Raman scattering by lithium niobate,” Phys. Rev. 152, 705–708 (1966).
[Crossref]

1965 (2)

C. H. Henry and J. J. Hopfield, “Raman scattering by polaritons,” Phys. Rev. Lett. 15, 964–966 (1965).
[Crossref]

M. Abramowitz, I. A. Stegun, and D. Miller, “Handbook of mathematical functions with formulas, graphs and mathematical tables (National Bureau of Standards Applied Mathematics Series No. 55),” J. Appl. Mech. 32, 239 (1965).
[Crossref]

1963 (1)

W. W. Rigrod and I. P. Kaminow, “Wide-band microwave light modulation,” Proc. IEEE 51, 137–140 (1963).
[Crossref]

Abarkan, M.

Abdelsalam, K.

Abe, M.

Aboketaf, A.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Abramowitz, M.

M. Abramowitz, I. A. Stegun, and D. Miller, “Handbook of mathematical functions with formulas, graphs and mathematical tables (National Bureau of Standards Applied Mathematics Series No. 55),” J. Appl. Mech. 32, 239 (1965).
[Crossref]

Acampado, C.

V. Stenger, A. Pollick, and C. Acampado, “Integrable thin film lithium niobate (TFLNTM) on silicon electro-optic modulators,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2019), paper Tu2H.6.

Acín, A.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Agarwal, A.

A. E. Dane, A. N. McCaughan, D. Zhu, Q. Zhao, C.-S. Kim, N. Calandri, A. Agarwal, F. Bellei, and K. K. Berggren, “Bias sputtered NbN and superconducting nanowire devices,” Appl. Phys. Lett. 111, 122601 (2017).
[Crossref]

Aghaeimeibodi, S.

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Lončar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113, 221102 (2018).
[Crossref]

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17, 7394–7400 (2017).
[Crossref]

Aguilar, G. H.

M. G. Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 1–6 (2017).
[Crossref]

Agulló-López, F.

J. Rams, A. Alcázar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[Crossref]

Ahmed, A. N. R.

Ahn, G. H.

D. M. Lukin, C. Dory, M. A. Guidry, K. Y. Yang, S. D. Mishra, R. Trivedi, M. Radulaski, S. Sun, D. Vercruysse, G. H. Ahn, and J. Vučković, “4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics,” Nat. Photonics 14, 330–334 (2020).
[Crossref]

Akhlaghi, M. K.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref]

Alberti, E.

D. Pohl, M. Reig Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2020).
[Crossref]

Albores-Mejia, A.

R. Stabile, A. Albores-Mejia, A. Rohit, and K. A. Williams, “Integrated optical switch matrices for packet data networks,” Microsyst. Nanoeng. 2, 15042 (2016).
[Crossref]

Alcázar-de-Velasco, A.

J. Rams, A. Alcázar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[Crossref]

Alex Wollack, E.

J. D. Witmer, T. P. McKenna, P. Arrangoiz-Arriola, R. Van Laer, E. Alex Wollack, F. Lin, A. K.-Y. Jen, J. Luo, and A. H. Safavi-Naeini, “A silicon-organic hybrid platform for quantum microwave-to-optical transduction,” Quantum Sci. Technol. 5, 034004 (2020).
[Crossref]

T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. Alex Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” Optica 7, 1737–1745 (2020).
[Crossref]

Alferness, R. C.

R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 30, 1121–1137 (1982).
[Crossref]

Alfieri, C. G. E.

Al-Rubaye, H.

Alshehri, B.

Alsing, P. M.

Alù, A.

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
[Crossref]

Alvarez, L. S. E.

M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012).
[Crossref]

An, A. N. P.

An, H.

D. Pak, H. An, A. Nandi, X. Jiang, Y. Xuan, and M. Hosseini, “Ytterbium-implanted photonic resonators based on thin film lithium niobate,” J. Appl. Phys. 128, 084302 (2020).
[Crossref]

Anderson, C. P.

S. J. Whiteley, G. Wolfowicz, C. P. Anderson, A. Bourassa, H. Ma, M. Ye, G. Koolstra, K. J. Satzinger, M. V. Holt, F. J. Heremans, A. N. Cleland, D. I. Schuster, G. Galli, and D. D. Awschalom, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nat. Phys. 15, 490–495 (2019).
[Crossref]

Andrade, N.

Anthony, J.

Aoki, K.

K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys. Part 1 45, 8696–8698 (2006).
[Crossref]

Arnold, G.

W. Hease, A. Rueda, R. Sahu, M. Wulf, G. Arnold, H. G. L. Schwefel, and J. M. Fink, “Cavity quantum electro-optics: microwave-telecom conversion in the quantum ground state,” PRX Quantum 1, 020315 (2020).
[Crossref]

Arrangoiz-Arriola, P.

J. D. Witmer, T. P. McKenna, P. Arrangoiz-Arriola, R. Van Laer, E. Alex Wollack, F. Lin, A. K.-Y. Jen, J. Luo, and A. H. Safavi-Naeini, “A silicon-organic hybrid platform for quantum microwave-to-optical transduction,” Quantum Sci. Technol. 5, 034004 (2020).
[Crossref]

T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. Alex Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” Optica 7, 1737–1745 (2020).
[Crossref]

W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” Optica 6, 845–853 (2019).
[Crossref]

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

Arterburn, S.

Asano, T.

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Assefa, S.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Atanackovic, P.

Atikian, H. A.

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “Review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Augusiak, R.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Awschalom, D.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

Awschalom, D. D.

S. J. Whiteley, G. Wolfowicz, C. P. Anderson, A. Bourassa, H. Ma, M. Ye, G. Koolstra, K. J. Satzinger, M. V. Holt, F. J. Heremans, A. N. Cleland, D. I. Schuster, G. Galli, and D. D. Awschalom, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nat. Phys. 15, 490–495 (2019).
[Crossref]

Azaña, J.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

Bacco, D.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Bache, M.

Baehr-Jones, T.

Baets, R.

J. Zhang, G. Muliuk, J. Juvert, S. Kumari, J. Goyvaerts, B. Haq, C. Op de Beeck, B. Kuyken, G. Morthier, D. Van Thourhout, R. Baets, G. Lepage, P. Verheyen, J. Van Campenhout, A. Gocalinska, J. O’Callaghan, E. Pelucchi, K. Thomas, B. Corbett, A. J. Trindade, and G. Roelkens, “III-V-on-Si photonic integrated circuits realized using micro-transfer-printing,” APL Photon. 4, 110803 (2019).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

Baghban, M. A.

Bahadori, M.

Bahl, G.

D. B. Sohn and G. Bahl, “Direction reconfigurable nonreciprocal acousto-optic modulator on chip,” APL Photon. 4, 126103 (2019).
[Crossref]

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photonics 12, 91–97 (2018).
[Crossref]

Baida, F. I.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Bain, J.

Bain, J. A.

Bainier, C.

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Baiocco, C.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 µm to beyond 2.4 µm,” Light Sci. Appl. 7, 17131 (2018).
[Crossref]

Bakhru, H.

Bakhru, S.

Bang, O.

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[Crossref]

M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express 16, 3273–3287 (2008).
[Crossref]

Barber, Z. H.

M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012).
[Crossref]

Barik, S.

S. Dutta, E. A. Goldschmidt, S. Barik, U. Saha, and E. Waks, “Integrated photonic platform for rare-earth ions in thin film lithium niobate,” Nano Lett. 20, 741–747 (2020).
[Crossref]

Barker, A. S.

A. S. Barker and R. Loudon, “Dielectric properties and optical phonons in LiNbO3,” Phys. Rev. 158, 433–445 (1967).
[Crossref]

Barreto, J.

Bartley, T.

J. P. Höpker, M. Bartnick, E. Meyer-Scott, F. Thiele, T. Meier, T. Bartley, S. Krapick, N. M. Montaut, M. Santandrea, H. Herrmann, S. Lengeling, R. Ricken, V. Quiring, A. E. Lita, V. B. Verma, T. Gerrits, S. W. Nam, and C. Silberhorn, “Towards integrated superconducting detectors on lithium niobate waveguides,” Proc. SPIE 10358, 1035809 (2017).
[Crossref]

Bartley, T. J.

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photon. 4, 056103 (2019).
[Crossref]

Bartnick, M.

J. P. Höpker, M. Bartnick, E. Meyer-Scott, F. Thiele, T. Meier, T. Bartley, S. Krapick, N. M. Montaut, M. Santandrea, H. Herrmann, S. Lengeling, R. Ricken, V. Quiring, A. E. Lita, V. B. Verma, T. Gerrits, S. W. Nam, and C. Silberhorn, “Towards integrated superconducting detectors on lithium niobate waveguides,” Proc. SPIE 10358, 1035809 (2017).
[Crossref]

Barzanjeh, S.

N. Lauk, N. Sinclair, S. Barzanjeh, J. P. Covey, M. Saffman, M. Spiropulu, and C. Simon, “Perspectives on quantum transduction,” Quantum Sci. Technol. 5, 020501 (2020).
[Crossref]

Bauters, J. F.

Bayer, M.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[Crossref]

Bazzan, M.

M. Bazzan and C. Sada, “Optical waveguides in lithium niobate: recent developments and applications,” Appl. Phys. Rev. 2, 040603 (2015).
[Crossref]

Becker, R. A.

Beckwitt, K.

Beetz, J.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Beling, A.

Q. Yu, J. Gao, N. Ye, B. Chen, K. Sun, L. Xie, K. Srinivasan, M. Zervas, G. Navickaite, M. Geiselmann, and A. Beling, “Heterogeneous photodiodes on silicon nitride waveguides,” Opt. Express 28, 14824–14830 (2020).
[Crossref]

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-power photodiodes with 65 GHz bandwidth heterogeneously integrated onto silicon-on-insulator nano-waveguides,” IEEE J. Sel. Top. Quantum Electron. 24, 6000206 (2018).
[Crossref]

Bellei, F.

A. E. Dane, A. N. McCaughan, D. Zhu, Q. Zhao, C.-S. Kim, N. Calandri, A. Agarwal, F. Bellei, and K. K. Berggren, “Bias sputtered NbN and superconducting nanowire devices,” Appl. Phys. Lett. 111, 122601 (2017).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Belmonte, M.

D. Janner, D. Tulli, M. García-Granda, M. Belmonte, and V. Pruneri, “Micro-structured integrated electro-optic LiNbO3 modulators,” Laser Photon. Rev. 3, 301–313 (2009).
[Crossref]

Benchabane, S.

G. Ulliac, B. Guichardaz, J.-Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88, 2417–2419 (2011).
[Crossref]

Bennett, A. J.

D. J. P. Ellis, A. J. Bennett, C. Dangel, J. P. Lee, J. P. Griffiths, T. A. Mitchell, T.-K. Paraiso, P. Spencer, D. A. Ritchie, and A. J. Shields, “Independent indistinguishable quantum light sources on a reconfigurable photonic integrated circuit,” Appl. Phys. Lett. 112, 211104 (2018).
[Crossref]

Berggren, K.

Berggren, K. K.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” Optica 7, 1714–1720 (2020).
[Crossref]

A. E. Dane, A. N. McCaughan, D. Zhu, Q. Zhao, C.-S. Kim, N. Calandri, A. Agarwal, F. Bellei, and K. K. Berggren, “Bias sputtered NbN and superconducting nanowire devices,” Appl. Phys. Lett. 111, 122601 (2017).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

M. Colangelo, B. Desiatov, D. Zhu, J. Holzgrafe, O. Medeiros, M. Loncar, and K. K. Berggren, “Superconducting nanowire single-photon detector on thin- film lithium niobate photonic waveguide,” in CLEO: Science and Innovations (2020), paper SM4O.4.

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Loncar, “Toward efficient microwave-optical transduction using cavity electro-optics in thin-film lithium niobate,” in Conference on Lasers and Electro-Optics (OSA, 2020).

L. Shao, D. Zhu, M. Colangelo, D. H. Lee, N. Sinclair, Y. Hu, P. T. Rakich, K. Lai, K. K. Berggren, and M. Loncar, “Electrical control of surface acoustic waves,” arXiv:2101.01626 (2021).

Bergman, J. G.

W. D. Johnston, I. P. Kaminow, and J. G. Bergman, “Stimulated Raman gain coefficients for Li6NbO3, Ba2NaNb5O15, and other materials,” Appl. Phys. Lett. 13, 190–193 (1968).
[Crossref]

Berlín, G.

Bernal, M.-P.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D 44, 305101 (2011).
[Crossref]

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Bernath, P. F.

R. V. Kochanov, I. E. Gordon, L. S. Rothman, K. P. Shine, S. W. Sharpe, T. J. Johnson, T. J. Wallington, J. J. Harrison, P. F. Bernath, M. Birk, G. Wagner, K. Le Bris, I. Bravo, and C. Hill, “REPRINT OF: Infrared absorption cross-sections in HITRAN2016 and beyond: expansion for climate, environment, and atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 238, 106708 (2019).
[Crossref]

Bernien, H.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

Bernstein, L.

R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, and D. Englund, “Large-scale optical neural networks based on photoelectric multiplication,” Phys. Rev. X 9, 021032 (2019).
[Crossref]

Berth, G.

S. Sanna, S. Neufeld, M. Rüsing, G. Berth, A. Zrenner, and W. G. Schmidt, “Raman scattering efficiency in LiTaO3 and LiNbO3 crystals,” Phys. Rev. B 91, 224302 (2015).
[Crossref]

S. Sanna, G. Berth, W. Hahn, A. Widhalm, A. Zrenner, and W. G. Schmidt, “Localised phonon modes at LiNbO3 (0001) surfaces,” Ferroelectrics 419, 1–8 (2011).
[Crossref]

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Bettiol, A.

Bettiol, A. A.

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29, 021205 (2011).
[Crossref]

Bhat, R.

W. K. Chan, A. Yi-Yan, T. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, and J. P. Harbison, “GaAs photodetectors integrated with lithium niobate waveguides,” IEEE Trans. Electron Devices 36, 2627–2628 (1989).
[Crossref]

Bhave, S.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

Birk, M.

R. V. Kochanov, I. E. Gordon, L. S. Rothman, K. P. Shine, S. W. Sharpe, T. J. Johnson, T. J. Wallington, J. J. Harrison, P. F. Bernath, M. Birk, G. Wagner, K. Le Bris, I. Bravo, and C. Hill, “REPRINT OF: Infrared absorption cross-sections in HITRAN2016 and beyond: expansion for climate, environment, and atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 238, 106708 (2019).
[Crossref]

Bishop, A. M.

C. Joshi, A. Farsi, A. Dutt, B.-Y. Kim, X. Ji, Y. Zhao, A. M. Bishop, M. Lipson, and A. L. Gaeta, “Frequency-domain quantum interference with correlated photons from an integrated microresonator,” Phys. Rev. Lett. 124, 143601 (2020).
[Crossref]

Blanco, M. C. S.

Blauvelt, H.

C. M. Gee, G. D. Thurmond, H. Blauvelt, and H. W. Yen, “Minimizing dc drift in LiNbO3 waveguide devices,” Appl. Phys. Lett. 47, 211–213 (1985).
[Crossref]

Bo, F.

Q. Luo, Z. Hao, C. Yang, R. Zhang, D. Zheng, S. Liu, H. Liu, F. Bo, Y. Kong, G. Zhang, and J. Xu, “Microdisk lasers on an erbium-doped lithium-niobite chip,” Sci. China Phys. Mech. Astron. 64, 100504 (2021).
[Crossref]

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32, 1806452 (2020).
[Crossref]

Z. Hao, L. Zhang, W. Mao, A. Gao, X. Gao, F. Gao, F. Bo, G. Zhang, and J. Xu, “Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators,” Photon. Res. 8, 311–317 (2020).
[Crossref]

L. Zhang, Z. Hao, Q. Luo, A. Gao, R. Zhang, C. Yang, F. Gao, F. Bo, G. Zhang, and J. Xu, “Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes,” Opt. Lett. 45, 3353–3356 (2020).
[Crossref]

L. Zhang, D. Zheng, W. Li, F. Bo, F. Gao, Y. Kong, G. Zhang, and J. Xu, “Microdisk resonators with lithium-niobate film on silicon substrate,” Opt. Express 27, 33662–33669 (2019).
[Crossref]

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, and Y. Cheng, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y.-F. Xiao, “High-Q chaotic lithium niobate microdisk cavity,” Opt. Lett. 43, 2917–2920 (2018).
[Crossref]

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China. Phys. Mech. Astron. 61, 114211 (2018).
[Crossref]

Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photon. Res. 5, 623–628 (2017).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
[Crossref]

Boes, A.

Boller, K.-J.

Bonato, C.

Bonaus, S.

Bonneau, D.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

N. A. Tyler, J. Barreto, G. E. Villarreal-Garcia, D. Bonneau, D. Sahin, J. L. O’Brien, and M. G. Thompson, “Modelling superconducting nanowire single photon detectors in a waveguide cavity,” Opt. Express 24, 8797–8808 (2016).
[Crossref]

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Bortz, M. L.

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[Crossref]

Bosenberg, W. R.

H. Nagata, N. F. O’Brien, W. R. Bosenberg, G. L. Reiff, and K. R. Voisine, “DC-voltage-induced thermal shift of bias point in LiNbO3 optical modulators,” IEEE Photon. Technol. Lett. 16, 2460–2462 (2004).
[Crossref]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “Review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Böttger, T.

C. W. Thiel, T. Böttger, and R. L. Cone, “Rare-earth-doped materials for applications in quantum information storage and signal processing,” J. Lumin. 131, 353–361 (2011).
[Crossref]

Bourassa, A.

S. J. Whiteley, G. Wolfowicz, C. P. Anderson, A. Bourassa, H. Ma, M. Ye, G. Koolstra, K. J. Satzinger, M. V. Holt, F. J. Heremans, A. N. Cleland, D. I. Schuster, G. Galli, and D. D. Awschalom, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nat. Phys. 15, 490–495 (2019).
[Crossref]

Bourson, P.

P. S. Zelenovskiy, V. Y. Shur, P. Bourson, M. D. Fontana, D. K. Kuznetsov, and E. A. Mingaliev, “Raman study of neutral and charged domain walls in lithium niobate,” Ferroelectrics 398, 34–41 (2010).
[Crossref]

Bowers, J.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 12, 1700256 (2018).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Bowers, J. E.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Elsevier, 2019).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Boynton, N.

Bradley, J. D. B.

Brandt, J.

R. Geiss, J. Brandt, H. Hartung, A. Tünnermann, T. Pertsch, E.-B. Kley, and F. Schrempel, “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching,” J. Vac. Sci. Technol. B 33, 010601 (2015).
[Crossref]

Branny, A.

Bratschitsch, R.

Braumüller, J.

M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver, “Superconducting qubits: current state of play,” Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).
[Crossref]

Bravo, I.

R. V. Kochanov, I. E. Gordon, L. S. Rothman, K. P. Shine, S. W. Sharpe, T. J. Johnson, T. J. Wallington, J. J. Harrison, P. F. Bernath, M. Birk, G. Wagner, K. Le Bris, I. Bravo, and C. Hill, “REPRINT OF: Infrared absorption cross-sections in HITRAN2016 and beyond: expansion for climate, environment, and atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 238, 106708 (2019).
[Crossref]

Breunig, I.

Brotons-Gisbert, M.

Brotzer, P.

D. Pohl, M. Reig Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2020).
[Crossref]

Brown, D.

V. E. Stenger, J. Toney, A. PoNick, D. Brown, B. Griffin, R. Nelson, and S. Sriram, “Low loss and low Vpi thin film lithium niobate on quartz electro-optic modulators,” in European Conference on Optical Communication (ECOC) (2017), pp. 1–3.

V. E. Stenger, J. Toney, A. PoNick, D. Brown, B. Griffin, R. Nelson, and S. Sriram, “Low loss and low vpi thin film lithium niobate on quartz electro-optic modulators,” in European Conference on Optical Communication (ECOC) (IEEE, 2017).

Bruch, A.

Z. Gong, M. Li, X. Liu, Y. Xu, J. Lu, A. Bruch, J. B. Surya, C. Zou, and H. X. Tang, “Photonic dissipation control for Kerr soliton generation in strongly Raman-active media,” Phys. Rev. Lett. 125, 183901 (2020).
[Crossref]

Z. Gong, X. Liu, Y. Xu, M. Xu, J. B. Surya, J. Lu, A. Bruch, C. Zou, and H. X. Tang, “Soliton microcomb generation at 2 µm in z-cut lithium niobate microring resonators,” Opt. Lett. 44, 3182–3185 (2019).
[Crossref]

Bruch, A. W.

Bruel, M.

M. Bruel, “Silicon on insulator material technology,” Electron. Lett. 31, 1201–1202 (1995).
[Crossref]

Bryan, D. A.

R. Gerson, J. F. Kirchhoff, L. E. Halliburton, and D. A. Bryan, “Photoconductivity parameters in lithium niobate,” J. Appl. Phys. 60, 3553–3557 (1986).
[Crossref]

Buckley, S. M.

S. Khan, S. M. Buckley, J. Chiles, R. P. Mirin, S. W. Nam, and J. M. Shainline, “Low-loss, high-bandwidth fiber-to-chip coupling using capped adiabatic tapered fibers,” APL Photon. 5, 056101 (2020).
[Crossref]

Bunandar, D.

Burek, M. J.

Buscaino, B.

B. Buscaino, M. Zhang, M. Lončar, and J. M. Kahn, “Design of efficient resonator-enhanced electro-optic frequency comb generators,” J. Lightwave Technol. 38, 1400–1413 (2020).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

Busch, J.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in CLEO (Optical Society of America, 2013), paper CW3O.3.

Buse, K.

Bussières, F.

Buyukkaya, M. A.

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Lončar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113, 221102 (2018).
[Crossref]

Cabrera, B.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73, 735 (1998).
[Crossref]

Cabrera, J. M.

J. Rams, A. Alcázar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[Crossref]

Cai, H.

Cai, L.

M. S. I. Khan, A. Mahmoud, L. Cai, M. Mahmoud, T. Mukherjee, J. A. Bain, and G. Piazza, “Extraction of elastooptic coefficient of thin-film arsenic trisulfide using a Mach–Zehnder acoustooptic modulator on lithium niobate,” J. Lightwave Technol. 38, 2053–2059 (2020).
[Crossref]

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photon. Res. 7, 1003–1013 (2019).
[Crossref]

L. Cai, A. Mahmoud, and G. Piazza, “Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications,” Opt. Express 27, 9794–9802 (2019).
[Crossref]

M. Mahmoud, A. Mahmoud, L. Cai, M. Khan, T. Mukherjee, J. Bain, and G. Piazza, “Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes,” Opt. Express 26, 25060–25075 (2018).
[Crossref]

Y. Wang, Z. Chen, L. Cai, Y. Jiang, H. Zhu, and H. Hu, “Amorphous silicon-lithium niobate thin film strip-loaded waveguides,” Opt. Mater. Express 7, 4018–4028 (2017).
[Crossref]

L. Cai, Y. Kang, and H. Hu, “Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film,” Opt. Express 24, 4640–4647 (2016).
[Crossref]

L. Cai, R. Kong, Y. Wang, and H. Hu, “Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film,” Opt. Express 23, 29211–29221 (2015).
[Crossref]

L. Cai, Y. Wang, and H. Hu, “Low-loss waveguides in a single-crystal lithium niobate thin film,” Opt. Lett. 40, 3013–3016 (2015).
[Crossref]

S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23, 24212–24219 (2015).
[Crossref]

L. Cai and G. Piazza, “Low-loss waveguides in Y-cut thin film lithium niobate for acousto-optic applications,” in Conference on Lasers and Electro-Optics (2019).

Cai, X.

S. Sun, M. He, M. Xu, S. Gao, S. Yu, and X. Cai, “Hybrid silicon and lithium niobate modulator,” IEEE J. Sel. Top. Quantum Electron. 27, 3300112 (2021).
[Crossref]

S. Sun, M. He, M. Xu, S. Gao, Z. Chen, X. Zhang, Z. Ruan, X. Wu, L. Zhou, L. Liu, C. Lu, C. Guo, L. Liu, S. Yu, and X. Cai, “Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform,” Photon. Res. 8, 1958–1963 (2020).
[Crossref]

Y. Niu, C. Lin, X. Liu, Y. Chen, X. Hu, Y. Zhang, X. Cai, Y.-X. Gong, Z. Xie, and S. Zhu, “Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains,” Appl. Phys. Lett. 116, 101104 (2020).
[Crossref]

M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, and X. Cai, “High-performance coherent optical modulators based on thin-film lithium niobate platform,” Nat. Commun. 11, 3911 (2020).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

J. Jian, M. Xu, L. Liu, Y. Luo, J. Zhang, L. Liu, L. Zhou, H. Chen, S. Yu, and X. Cai, “High modulation efficiency lithium niobate Michelson interferometer modulator,” Opt. Express 27, 18731–18739 (2019).
[Crossref]

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

Y. Pan, S. Sun, M. Xu, M. He, S. Yu, and X. Cai, “Low fiber-to-fiber loss, large bandwidth and low drive voltage lithium niobate on insulator modulators,” in Conference on Lasers and Electro-Optics (OSA, 2020).

Y. Zhang, M. Xu, H. Zhang, M. Li, J. Jian, M. He, L. Chen, L. Wang, X. Cai, X. Xiao, and S. Yu, “220 Gbit/s optical PAM4 modulation based on lithium niobate on insulator modulator,” in 45th European Conference on Optical Communication (ECOC) (2019), pp. 1–4.

M. Xu, M. He, S. Yu, and X. Cai, “Thin-film lithium niobate modulator based on distributed Bragg grating resonators,” in Asia Communications and Photonics Conference (ACPC) (Optical Society of America, 2019), paper S4D.5.

M. Xu, M. He, and X. Cai, “Generation of flat optical frequency comb using integrated cascaded lithium niobate modulators,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2020), paper STh1O.5.

Calandri, N.

A. E. Dane, A. N. McCaughan, D. Zhu, Q. Zhao, C.-S. Kim, N. Calandri, A. Agarwal, F. Bellei, and K. K. Berggren, “Bias sputtered NbN and superconducting nanowire devices,” Appl. Phys. Lett. 111, 122601 (2017).
[Crossref]

Calero, V.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Callahan, P. T.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 µm to beyond 2.4 µm,” Light Sci. Appl. 7, 17131 (2018).
[Crossref]

Camacho-Gonzalez, G. F.

Camacho-González, G. F.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

Campbell, C.

C. Campbell, Surface Acoustic Wave Devices and Their Signal Processing Applications (Elsevier, 1989).

Cao, L.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Capmany, J.

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

Caraquitena, J.

C.-B. Huang, Z. Jiang, D. Leaird, J. Caraquitena, and A. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2, 227–248 (2008).
[Crossref]

Cardenas, J.

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73, 2293–2295 (1998).
[Crossref]

Carlson, D. R.

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42, 2314–2317 (2017).
[Crossref]

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Carolan, J.

Carr, L. D.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

Carrascosa, M.

J. Rams, A. Alcázar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[Crossref]

Carroll, L.

Carusotto, I.

T. Ozawa, H. M. Price, N. Goldman, O. Zilberberg, and I. Carusotto, “Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics,” Phys. Rev. A 93, 043827 (2016).
[Crossref]

Casas-Bedoya, A.

Caspani, L.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Chai, Z.

M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator,” Quantum Eng. 1, e9 (2019).
[Crossref]

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness,” Nanomaterials (Basel) 8, 910 (2018).
[Crossref]

R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43, 4116–4119 (2018).
[Crossref]

Chakravarty, S.

Chan, W. K.

W. K. Chan, A. Yi-Yan, T. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, and J. P. Harbison, “GaAs photodetectors integrated with lithium niobate waveguides,” IEEE Trans. Electron Devices 36, 2627–2628 (1989).
[Crossref]

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Chang, L.

Chapman, R. J.

Chen, B.

Chen, F.

J. Lv, Y. Cheng, W. Yuan, X. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5, 1274–1280 (2015).
[Crossref]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[Crossref]

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[Crossref]

Chen, H.

M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, and X. Cai, “High-performance coherent optical modulators based on thin-film lithium niobate platform,” Nat. Commun. 11, 3911 (2020).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

J. Jian, M. Xu, L. Liu, Y. Luo, J. Zhang, L. Liu, L. Zhou, H. Chen, S. Yu, and X. Cai, “High modulation efficiency lithium niobate Michelson interferometer modulator,” Opt. Express 27, 18731–18739 (2019).
[Crossref]

J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26, 29651–29658 (2018).
[Crossref]

Chen, J.

Chen, J.-Y.

Chen, K. X.

Chen, L.

M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, and X. Cai, “High-performance coherent optical modulators based on thin-film lithium niobate platform,” Nat. Commun. 11, 3911 (2020).
[Crossref]

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23, 13255–13264 (2015).
[Crossref]

L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
[Crossref]

L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21, 27003–27010 (2013).
[Crossref]

L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express 20, 4032–4038 (2012).
[Crossref]

Y. Zhang, M. Xu, H. Zhang, M. Li, J. Jian, M. He, L. Chen, L. Wang, X. Cai, X. Xiao, and S. Yu, “220 Gbit/s optical PAM4 modulation based on lithium niobate on insulator modulator,” in 45th European Conference on Optical Communication (ECOC) (2019), pp. 1–4.

Chen, M.-C.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science 370, 1460–1463 (2020).
[Crossref]

Chen, T.

G. Qian, L. Huang, F. Zhou, J. Tang, X. Chen, Y. Kong, and T. Chen, “Design and fabrication of cantilevered fiber-to-waveguide mode size converter for thin-film lithium niobate photonic integrated circuits,” Proc. SPIE 11455, 1145587 (2020).
[Crossref]

Chen, W.

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

J. Zhou, Y. Liang, Z. Liu, W. Chu, H. Zhang, D. Yin, Z. Fang, R. Wu, J. Zhang, W. Chen, Z. Wang, Y. Zhou, M. Wang, and Y. Cheng, “On-chip integrated waveguide amplifiers on erbium-doped thin film lithium niobate on insulator,” arXiv:2101.00783 (2021).

Chen, X.

Y. Liu, X. Yan, J. Wu, B. Zhu, Y. Chen, and X. Chen, “On-chip erbium-doped lithium niobate microcavity laser,” Sci. China Phys. Mech. Astron. 64, 234262 (2021).
[Crossref]

G. Qian, L. Huang, F. Zhou, J. Tang, X. Chen, Y. Kong, and T. Chen, “Design and fabrication of cantilevered fiber-to-waveguide mode size converter for thin-film lithium niobate photonic integrated circuits,” Proc. SPIE 11455, 1145587 (2020).
[Crossref]

X. Ye, S. Liu, Y. Chen, Y. Zheng, and X. Chen, “Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching,” Opt. Lett. 45, 523–526 (2020).
[Crossref]

S. Liu, Y. Zheng, Z. Fang, X. Ye, Y. Cheng, and X. Chen, “Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes,” Opt. Lett. 44, 1456–1459 (2019).
[Crossref]

T. Ding, Y. Zheng, and X. Chen, “On-chip Solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator (PPLNOI) ridge waveguide,” J. Lightwave Technol. 37, 1296–1300 (2019).
[Crossref]

L. Yuan, Q. Lin, A. Zhang, M. Xiao, X. Chen, and S. Fan, “Photonic gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions,” Phys. Rev. Lett. 122, 083903 (2019).
[Crossref]

L. Ge, Y. Chen, H. Jiang, G. Li, B. Zhu, Y. Liu, and X. Chen, “Broadband quasi-phase matching in a MgO:PPLN thin film,” Photon. Res. 6, 954–958 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

S. Liu, Y. Zheng, and X. Chen, “Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk,” Opt. Lett. 42, 3626–3629 (2017).
[Crossref]

G. Li, Y. Chen, H. Jiang, and X. Chen, “Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band,” Opt. Lett. 42, 939–942 (2017).
[Crossref]

H. Jiang, R. Luo, H. Liang, X. Chen, Y. Chen, and Q. Lin, “Fast response of photorefraction in lithium niobate microresonators,” Opt. Lett. 42, 3267–3270 (2017).
[Crossref]

Chen, Y.

Y. Liu, X. Yan, J. Wu, B. Zhu, Y. Chen, and X. Chen, “On-chip erbium-doped lithium niobate microcavity laser,” Sci. China Phys. Mech. Astron. 64, 234262 (2021).
[Crossref]

Y. Niu, C. Lin, X. Liu, Y. Chen, X. Hu, Y. Zhang, X. Cai, Y.-X. Gong, Z. Xie, and S. Zhu, “Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains,” Appl. Phys. Lett. 116, 101104 (2020).
[Crossref]

X. Ye, S. Liu, Y. Chen, Y. Zheng, and X. Chen, “Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching,” Opt. Lett. 45, 523–526 (2020).
[Crossref]

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

L. Ge, Y. Chen, H. Jiang, G. Li, B. Zhu, Y. Liu, and X. Chen, “Broadband quasi-phase matching in a MgO:PPLN thin film,” Photon. Res. 6, 954–958 (2018).
[Crossref]

G. Li, Y. Chen, H. Jiang, and X. Chen, “Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band,” Opt. Lett. 42, 939–942 (2017).
[Crossref]

H. Jiang, R. Luo, H. Liang, X. Chen, Y. Chen, and Q. Lin, “Fast response of photorefraction in lithium niobate microresonators,” Opt. Lett. 42, 3267–3270 (2017).
[Crossref]

Chen, Y. H.

Chen, Y.-F.

Chen, Z.

S. Sun, M. He, M. Xu, S. Gao, Z. Chen, X. Zhang, Z. Ruan, X. Wu, L. Zhou, L. Liu, C. Lu, C. Guo, L. Liu, S. Yu, and X. Cai, “Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform,” Photon. Res. 8, 1958–1963 (2020).
[Crossref]

Z. Chen, R. Peng, Y. Wang, H. Zhu, and H. Hu, “Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector,” Opt. Mater. Express 7, 4010–4017 (2017).
[Crossref]

Z. Chen, Y. Wang, Y. Jiang, R. Kong, and H. Hu, “Grating coupler on single-crystal lithium niobate thin film,” Opt. Mater. 72, 136–139 (2017).
[Crossref]

Y. Wang, Z. Chen, L. Cai, Y. Jiang, H. Zhu, and H. Hu, “Amorphous silicon-lithium niobate thin film strip-loaded waveguides,” Opt. Mater. Express 7, 4018–4028 (2017).
[Crossref]

A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Lončar, “An integrated lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy,” arXiv:2003.04533 (2020).

Z. Chen, Q. Xu, K. Zhang, W.-H. Wong, D.-L. Zhang, E. Y.-B. Pun, and C. Wang, “Efficient erbium-doped thin-film lithium niobate waveguide amplifiers,” arXiv:2101.06994 (2021).

Cheng, R.

A. A. Sayem, R. Cheng, S. Wang, and H. X. Tang, “Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 116, 151102 (2020).
[Crossref]

R. Cheng, S. Wang, C.-L. Zou, and H. X. Tang, “Design of a micrometer-long superconducting nanowire perfect absorber for efficient high-speed single-photon detection,” Photon. Res. 8, 1260–1267 (2020).
[Crossref]

S. Wang, L. Yang, R. Cheng, Y. Xu, M. Shen, R. L. Cone, C. W. Thiel, and H. X. Tang, “Incorporation of erbium ions into thin-film lithium niobate integrated photonics,” Appl. Phys. Lett. 116, 151103 (2020).
[Crossref]

M. Yu, Y. Okawachi, R. Cheng, C. Wang, M. Zhang, A. L. Gaeta, and M. Lončar, “Raman lasing and soliton mode-locking in lithium niobate microresonators,” Light Sci Appl 9, 9 (2020).
[Crossref]

R. Cheng, S. Wang, and H. X. Tang, “Superconducting nanowire single-photon detectors fabricated from atomic-layer- deposited NbN,” Appl. Phys. Lett. 115, 241101 (2019).
[Crossref]

L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

Y. Xu, A. A. Sayem, L. Fan, S. Wang, R. Cheng, C.-L. Zou, W. Fu, L. Yang, M. Xu, and H. X. Tang, “Bidirectional electro-optic conversion reaching 1% efficiency with thin-film lithium niobate,” arXiv:2012.14909 (2020).

M. Zhang, C. Reimer, L. He, R. Cheng, M. Yu, R. Zhu, and M. Loncar, “Microresonator frequency comb generation with simultaneous Kerr and electro-optic nonlinearities,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2019), pp. 1–2.

Cheng, Y.

J.-X. Zhou, R.-H. Gao, J. Lin, M. Wang, W. Chu, W.-B. Li, D.-F. Yin, L. Deng, Z.-W. Fang, J.-H. Zhang, R.-B. Wu, and Y. Cheng, “Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching,” Chin. Phys. Lett. 37, 084201 (2020).
[Crossref]

N. Yao, J. Zhou, R. Gao, J. Lin, M. Wang, Y. Cheng, W. Fang, and L. Tong, “Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber,” Opt. Express 28, 12416–12423 (2020).
[Crossref]

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, and Y. Cheng, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

Z. Fang, S. Haque, J. Lin, R. Wu, J. Zhang, M. Wang, J. Zhou, M. Rafa, T. Lu, and Y. Cheng, “Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator,” Opt. Lett. 44, 1214–1217 (2019).
[Crossref]

S. Liu, Y. Zheng, Z. Fang, X. Ye, Y. Cheng, and X. Chen, “Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes,” Opt. Lett. 44, 1456–1459 (2019).
[Crossref]

J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials (Basel) 9, 1218 (2019).
[Crossref]

M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator,” Quantum Eng. 1, e9 (2019).
[Crossref]

J. Lin, J. Zhou, R. Wu, M. Wang, Z. Fang, W. Chu, J. Zhang, L. Qiao, and Y. Cheng, “High-precision propagation-loss measurement of single-mode optical waveguides on lithium niobate on insulator,” Micromachines (Basel) 10, 612 (2019).
[Crossref]

R. Wu, J. Lin, M. Wang, Z. Fang, W. Chu, J. Zhang, J. Zhou, and Y. Cheng, “Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanical polish,” Opt. Lett. 44, 4698–4701 (2019).
[Crossref]

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness,” Nanomaterials (Basel) 8, 910 (2018).
[Crossref]

R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43, 4116–4119 (2018).
[Crossref]

Z. Fang, Y. Xu, M. Wang, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “Monolithic integration of a lithium niobate microresonator with a free-standing waveguide using femtosecond laser assisted ion beam writing,” Sci. Rep. 7, 45610 (2017).
[Crossref]

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China. Ser. G 58, 114209 (2015).
[Crossref]

J. Lv, Y. Cheng, W. Yuan, X. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5, 1274–1280 (2015).
[Crossref]

J. Zhou, Y. Liang, Z. Liu, W. Chu, H. Zhang, D. Yin, Z. Fang, R. Wu, J. Zhang, W. Chen, Z. Wang, Y. Zhou, M. Wang, and Y. Cheng, “On-chip integrated waveguide amplifiers on erbium-doped thin film lithium niobate on insulator,” arXiv:2101.00783 (2021).

Z. Wang, Z. Fang, Z. Liu, W. Chu, Y. Zhou, J. Zhang, R. Wu, M. Wang, T. Lu, and Y. Cheng, “An on-chip tunable micro-disk laser fabricated on Er3+ doped lithium niobate on insulator (LNOI),” arXiv:2009.08953 (2020).

Cheng, Z. Y.

Z. Y. Cheng and C. S. Tsai, “Baseband integrated acousto-optic frequency shifter,” Appl. Phys. Lett. 60, 12–14 (1992).
[Crossref]

Cheung, E. J. H.

Chia, C.

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Lončar, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” Optica 6, 1498–1505 (2019).
[Crossref]

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Loncar, “Acoustically mediated microwave-to-optical conversion on thin-film lithium niobate,” in IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) (2020), pp. 1215–1218.

Chiles, J.

S. Khan, S. M. Buckley, J. Chiles, R. P. Mirin, S. W. Nam, and J. M. Shainline, “Low-loss, high-bandwidth fiber-to-chip coupling using capped adiabatic tapered fibers,” APL Photon. 5, 056101 (2020).
[Crossref]

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23, 22746–22752 (2015).
[Crossref]

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
[Crossref]

Chiu, Y. J.

J. Shin, C. Ozturk, S. R. Sakamoto, Y. J. Chiu, and N. Dagli, “Novel T-rail electrodes for substrate removed low-voltage high-speed GaAs/AlGaAs electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 53, 636–643 (2005).
[Crossref]

Cho, Y.

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[Crossref]

Choi, H.

Choudhary, A.

Chowdhury, A.

Chu, S.

Chu, S. T.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Chu, W.

J.-X. Zhou, R.-H. Gao, J. Lin, M. Wang, W. Chu, W.-B. Li, D.-F. Yin, L. Deng, Z.-W. Fang, J.-H. Zhang, R.-B. Wu, and Y. Cheng, “Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching,” Chin. Phys. Lett. 37, 084201 (2020).
[Crossref]

R. Wu, J. Lin, M. Wang, Z. Fang, W. Chu, J. Zhang, J. Zhou, and Y. Cheng, “Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanical polish,” Opt. Lett. 44, 4698–4701 (2019).
[Crossref]

J. Lin, J. Zhou, R. Wu, M. Wang, Z. Fang, W. Chu, J. Zhang, L. Qiao, and Y. Cheng, “High-precision propagation-loss measurement of single-mode optical waveguides on lithium niobate on insulator,” Micromachines (Basel) 10, 612 (2019).
[Crossref]

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, and Y. Cheng, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness,” Nanomaterials (Basel) 8, 910 (2018).
[Crossref]

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
[Crossref]

Z. Wang, Z. Fang, Z. Liu, W. Chu, Y. Zhou, J. Zhang, R. Wu, M. Wang, T. Lu, and Y. Cheng, “An on-chip tunable micro-disk laser fabricated on Er3+ doped lithium niobate on insulator (LNOI),” arXiv:2009.08953 (2020).

J. Zhou, Y. Liang, Z. Liu, W. Chu, H. Zhang, D. Yin, Z. Fang, R. Wu, J. Zhang, W. Chen, Z. Wang, Y. Zhou, M. Wang, and Y. Cheng, “On-chip integrated waveguide amplifiers on erbium-doped thin film lithium niobate on insulator,” arXiv:2101.00783 (2021).

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Cino, A.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Clarke, R. M.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73, 735 (1998).
[Crossref]

Cleland, A. N.

S. J. Whiteley, G. Wolfowicz, C. P. Anderson, A. Bourassa, H. Ma, M. Ye, G. Koolstra, K. J. Satzinger, M. V. Holt, F. J. Heremans, A. N. Cleland, D. I. Schuster, G. Galli, and D. D. Awschalom, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nat. Phys. 15, 490–495 (2019).
[Crossref]

Clemmen, C.

C. Joshi, A. Farsi, C. Clemmen, S. Ramelow, and A. Gaeta, “Frequency multiplexing for quasi-deterministic heralded single-photon sources,” Nat. Commun. 9, 847 (2018).
[Crossref]

Clerc, M. G.

A. U. Nielsen, Y. Xu, M. Ferré, M. G. Clerc, S. Coen, S. G. Murdoch, and M. Erkintalo, “Engineered discreteness enables observation and control of chimera-like states in a system with local coupling,” arXiv:1910.11329 (2019).

Coddington, I.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42, 2314–2317 (2017).
[Crossref]

Coen, S.

T. Hansson, F. Leo, M. Erkintalo, J. Anthony, S. Coen, I. Ricciardi, M. De Rosa, and S. Wabnitz, “Single envelope equation modeling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearities,” J. Opt. Soc. Am. B 33, 1207–1215 (2016).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

A. U. Nielsen, Y. Xu, M. Ferré, M. G. Clerc, S. Coen, S. G. Murdoch, and M. Erkintalo, “Engineered discreteness enables observation and control of chimera-like states in a system with local coupling,” arXiv:1910.11329 (2019).

Colangelo, M.

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” Optica 7, 1714–1720 (2020).
[Crossref]

L. Shao, D. Zhu, M. Colangelo, D. H. Lee, N. Sinclair, Y. Hu, P. T. Rakich, K. Lai, K. K. Berggren, and M. Loncar, “Electrical control of surface acoustic waves,” arXiv:2101.01626 (2021).

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Loncar, “Toward efficient microwave-optical transduction using cavity electro-optics in thin-film lithium niobate,” in Conference on Lasers and Electro-Optics (OSA, 2020).

M. Colangelo, B. Desiatov, D. Zhu, J. Holzgrafe, O. Medeiros, M. Loncar, and K. K. Berggren, “Superconducting nanowire single-photon detector on thin- film lithium niobate photonic waveguide,” in CLEO: Science and Innovations (2020), paper SM4O.4.

Cole, D. C.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Colling, P.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73, 735 (1998).
[Crossref]

Collodo, M. C.

Cone, R. L.

S. Wang, L. Yang, R. Cheng, Y. Xu, M. Shen, R. L. Cone, C. W. Thiel, and H. X. Tang, “Incorporation of erbium ions into thin-film lithium niobate integrated photonics,” Appl. Phys. Lett. 116, 151103 (2020).
[Crossref]

N. Sinclair, D. Oblak, C. W. Thiel, R. L. Cone, and W. Tittel, “Properties of a rare-earth-ion-doped waveguide at sub-kelvin temperatures for quantum signal processing,” Phys. Rev. Lett. 118, 100504 (2017).
[Crossref]

C. W. Thiel, T. Böttger, and R. L. Cone, “Rare-earth-doped materials for applications in quantum information storage and signal processing,” J. Lumin. 131, 353–361 (2011).
[Crossref]

Corbett, B.

J. Zhang, G. Muliuk, J. Juvert, S. Kumari, J. Goyvaerts, B. Haq, C. Op de Beeck, B. Kuyken, G. Morthier, D. Van Thourhout, R. Baets, G. Lepage, P. Verheyen, J. Van Campenhout, A. Gocalinska, J. O’Callaghan, E. Pelucchi, K. Thomas, B. Corbett, A. J. Trindade, and G. Roelkens, “III-V-on-Si photonic integrated circuits realized using micro-transfer-printing,” APL Photon. 4, 110803 (2019).
[Crossref]

J. Zhang, B. Haq, J. O’Callaghan, A. Gocalinska, E. Pelucchi, A. J. Trindade, B. Corbett, G. Morthier, and G. Roelkens, “Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser,” Opt. Express 26, 8821–8830 (2018).
[Crossref]

Corcoran, B.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 12, 1700256 (2018).
[Crossref]

Cortés, L. R.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Courjal, N.

G. Ulliac, B. Guichardaz, J.-Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88, 2417–2419 (2011).
[Crossref]

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D 44, 305101 (2011).
[Crossref]

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Covey, J. P.

N. Lauk, N. Sinclair, S. Barzanjeh, J. P. Covey, M. Saffman, M. Spiropulu, and C. Simon, “Perspectives on quantum transduction,” Quantum Sci. Technol. 5, 020501 (2020).
[Crossref]

Cressman, P. J.

V. E. Wood, P. J. Cressman, R. L. Holman, and C. M. Verber, Photorefractive Effects in Waveguides, Photorefractive Materials and Their Applications II. Topics in Applied Physics, P. Günter and J. P. Huignard, eds. (Springer, 1989), Vol. 62.

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73, 2293–2295 (1998).
[Crossref]

Crowe, D.

Cui, J.-M.

C.-L. Zou, J.-M. Cui, F.-W. Sun, X. Xiong, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators,” Laser Photon. Rev. 9, 114–119 (2015).
[Crossref]

Cullen, T.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An integrated low-voltage broadband lithium niobate phase modulator,” IEEE Photon. Technol. Lett. 31, 889–892 (2019).
[Crossref]

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–640 (2000).
[Crossref]

Dadap, J. I.

Dagli, N.

J. Shin, C. Ozturk, S. R. Sakamoto, Y. J. Chiu, and N. Dagli, “Novel T-rail electrodes for substrate removed low-voltage high-speed GaAs/AlGaAs electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 53, 636–643 (2005).
[Crossref]

R. Spickermann, S. R. Sakamoto, and N. Dagli, “In traveling wave modulators which velocity to match?” in Conference Proceedings LEOS’96 9th Annual Meeting IEEE Lasers and Electro-Optics Society (1996), Vol. 2, pp. 97–98.

Dahmani, Y. D.

C. J. Sarabalis, R. Van Laer, R. N. Patel, Y. D. Dahmani, W. Jiang, F. M. Mayor, and A. H. Safavi-Naeini, “Acousto-optic modulation of a wavelength-scale waveguide,” Optica 8, 477–483 (2021).
[Crossref]

Y. D. Dahmani, C. J. Sarabalis, W. Jiang, F. M. Mayor, and A. H. Safavi-Naeini, “Piezoelectric transduction of a wavelength-scale mechanical waveguide,” Phys. Rev. Appl. 13, 024069 (2020).
[Crossref]

W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nat. Commun. 11, 1166 (2020).
[Crossref]

Dalacu, D.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref]

Dallo, C.

Dane, A.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Dane, A. E.

A. E. Dane, A. N. McCaughan, D. Zhu, Q. Zhao, C.-S. Kim, N. Calandri, A. Agarwal, F. Bellei, and K. K. Berggren, “Bias sputtered NbN and superconducting nanowire devices,” Appl. Phys. Lett. 111, 122601 (2017).
[Crossref]

Dangel, C.

D. J. P. Ellis, A. J. Bennett, C. Dangel, J. P. Lee, J. P. Griffiths, T. A. Mitchell, T.-K. Paraiso, P. Spencer, D. A. Ritchie, and A. J. Shields, “Independent indistinguishable quantum light sources on a reconfigurable photonic integrated circuit,” Appl. Phys. Lett. 112, 211104 (2018).
[Crossref]

Danner, A. J.

S. Y. Siew, E. J. H. Cheung, H. Liang, A. Bettiol, N. Toyoda, B. Alshehri, E. Dogheche, and A. J. Danner, “Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening,” Opt. Express 26, 4421–4430 (2018).
[Crossref]

S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib microring resonators in lithium niobate on insulator,” IEEE Photon. Technol. Lett. 28, 573–576 (2016).
[Crossref]

D. Jun, J. Wei, C. E. Png, S. Guangyuan, J. Son, H. Yang, and A. J. Danner, “Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas,” J. Vac. Sci. Technol. B 30, 011208 (2012).
[Crossref]

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29, 021205 (2011).
[Crossref]

Davids, P.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

De Haseth, J. A.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007).

de Leon, N. P.

de Riedmatten, H.

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002).
[Crossref]

De Rosa, M.

Deakin, C.

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Delfyett, P.

Della Corte, F. G.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
[Crossref]

Deng, L.

J.-X. Zhou, R.-H. Gao, J. Lin, M. Wang, W. Chu, W.-B. Li, D.-F. Yin, L. Deng, Z.-W. Fang, J.-H. Zhang, R.-B. Wu, and Y. Cheng, “Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching,” Chin. Phys. Lett. 37, 084201 (2020).
[Crossref]

Deng, Y.-H.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science 370, 1460–1463 (2020).
[Crossref]

DeRose, C. T.

DeSalvo, R.

Desiatov, B.

Y. Okawachi, M. Yu, B. Desiatov, B. Y. Kim, T. Hansson, M. Lončar, and A. L. Gaeta, “Chip-based self-referencing using integrated lithium niobate waveguides,” Optica 7, 702–707 (2020).
[Crossref]

M. Jankowski, C. Langrock, B. Desiatov, A. Marandi, C. Wang, M. Zhang, C. R. Phillips, M. Lončar, and M. M. Fejer, “Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides,” Optica 7, 40–46 (2020).
[Crossref]

B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Lončar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6, 380–384 (2019).
[Crossref]

M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Lončar, “Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides,” Opt. Lett. 44, 1222–1225 (2019).
[Crossref]

B. Desiatov and M. Lončar, “Silicon photodetector for integrated lithium niobate photonics,” Appl. Phys. Lett. 115, 121108 (2019).
[Crossref]

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Lončar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113, 221102 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

M. Colangelo, B. Desiatov, D. Zhu, J. Holzgrafe, O. Medeiros, M. Loncar, and K. K. Berggren, “Superconducting nanowire single-photon detector on thin- film lithium niobate photonic waveguide,” in CLEO: Science and Innovations (2020), paper SM4O.4.

Devenport, J.

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 19, 312–314 (2007).
[Crossref]

Dhand, I.

I. Dhand, “Circumventing defective components in linear optical interferometers,” arXiv:1912.08789 (2019).

Diddams, S. A.

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42, 2314–2317 (2017).
[Crossref]

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–640 (2000).
[Crossref]

Dierolf, V.

V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res. 37, 449–489 (2007).
[Crossref]

Digonnet, M. J. F.

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded (CRC Press, 2001).

Ding, T.

Ding, X.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science 370, 1460–1463 (2020).
[Crossref]

Ding, Y.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,” Opt. Lett. 39, 5348–5350 (2014).
[Crossref]

Diziain, S.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

Dogheche, E.

S. Y. Siew, E. J. H. Cheung, H. Liang, A. Bettiol, N. Toyoda, B. Alshehri, E. Dogheche, and A. J. Danner, “Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening,” Opt. Express 26, 4421–4430 (2018).
[Crossref]

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-Viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90, 5274–5277 (2001).
[Crossref]

Doolittle, W. A.

M. B. Tellekamp, J. C. Shank, M. S. Goorsky, and W. A. Doolittle, “Molecular beam epitaxy growth of high crystalline quality LiNbO3,” J. Electron. Mater. 45, 6292–6299 (2016).
[Crossref]

Dorenbos, S. N.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Dory, C.

D. M. Lukin, C. Dory, M. A. Guidry, K. Y. Yang, S. D. Mishra, R. Trivedi, M. Radulaski, S. Sun, D. Vercruysse, G. H. Ahn, and J. Vučković, “4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics,” Nat. Photonics 14, 330–334 (2020).
[Crossref]

Douglas, E. A.

Dreisow, F.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

Dremin, A. A.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[Crossref]

Droste, S.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42, 2314–2317 (2017).
[Crossref]

Duchesne, D.

Dudley, J. M.

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Dutt, A.

A. Dutt, Q. Lin, L. Yuan, M. Minkov, M. Xiao, and S. Fan, “A single photonic cavity with two independent physical synthetic dimensions,” Science 367, 59–64 (2020).
[Crossref]

C. Joshi, A. Farsi, A. Dutt, B.-Y. Kim, X. Ji, Y. Zhao, A. M. Bishop, M. Lipson, and A. L. Gaeta, “Frequency-domain quantum interference with correlated photons from an integrated microresonator,” Phys. Rev. Lett. 124, 143601 (2020).
[Crossref]

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, “Experimental band structure spectroscopy along a synthetic dimension,” Nat. Commun. 10, 3122 (2019).
[Crossref]

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

Dutta, S.

S. Dutta, E. A. Goldschmidt, S. Barik, U. Saha, and E. Waks, “Integrated photonic platform for rare-earth ions in thin film lithium niobate,” Nano Lett. 20, 741–747 (2020).
[Crossref]

Duvall, S. G.

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Economou, S. E.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

Efimov, A.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[Crossref]

Eggleton, B. J.

Eichenfield, M.

M. Eichenfield, Reduced Dimensionality Lithium Niobate Microsystems (Sandia National Lab, 2017).

Elkus, B. S.

Ellis, D. J. P.

D. J. P. Ellis, A. J. Bennett, C. Dangel, J. P. Lee, J. P. Griffiths, T. A. Mitchell, T.-K. Paraiso, P. Spencer, D. A. Ritchie, and A. J. Shields, “Independent indistinguishable quantum light sources on a reconfigurable photonic integrated circuit,” Appl. Phys. Lett. 112, 211104 (2018).
[Crossref]

Elshaari, A. W.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref]

Eng, C. H. Z.

Eng, L. M.

J. Zhao, M. Rüsing, M. Roeper, L. M. Eng, and S. Mookherjea, “Poling thin-film x-cut lithium niobate for quasi-phase matching with sub-micrometer periodicity,” J. Appl. Phys. 127, 193104 (2020).
[Crossref]

Engin, E.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Englund, D.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, and D. Englund, “Large-scale optical neural networks based on photoelectric multiplication,” Phys. Rev. X 9, 021032 (2019).
[Crossref]

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophotonic processors,” Optica 5, 1623–1631 (2018).
[Crossref]

T.-J. Lu, M. Fanto, H. Choi, P. Thomas, J. Steidle, S. Mouradian, W. Kong, D. Zhu, H. Moon, K. Berggren, J. Kim, M. Soltani, S. Preble, and D. Englund, “Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum,” Opt. Express 26, 11147–11160 (2018).
[Crossref]

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17, 7394–7400 (2017).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Epping, J. P.

Ercan, B.

C. Qin, H. Lu, B. Ercan, S. Li, and S. J. B. Yoo, “Single-tone optical frequency shifting and nonmagnetic optical isolation by electro-optical emulation of a rotating half-wave plate in a traveling-wave lithium niobate waveguide,” IEEE Photon. J. 9, 6600913 (2017).
[Crossref]

Erkintalo, M.

Errando-Herranz, C.

Escalé, M. R.

Esman, R.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An integrated low-voltage broadband lithium niobate phase modulator,” IEEE Photon. Technol. Lett. 31, 889–892 (2019).
[Crossref]

Etrich, C.

C. Etrich, U. Peschel, and F. Lederer, “Solitary waves in quadratically nonlinear resonators,” Phys. Rev. Lett. 79, 2454–2457 (1997).
[Crossref]

Eyres, L. A.

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[Crossref]

Fahrenkopf, N.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 µm to beyond 2.4 µm,” Light Sci. Appl. 7, 17131 (2018).
[Crossref]

Fallahkhair, A. B.

Fallnich, C.

Fan, H.

Z. Ma, J.-Y. Chen, Z. Li, C. Tang, Y. M. Sua, H. Fan, and Y.-P. Huang, “Ultrabright quantum photon sources on chip,” Phys. Rev. Lett. 125, 263602 (2020).
[Crossref]

J.-Y. Chen, Y. M. Sua, H. Fan, and Y.-P. Huang, “Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics,” OSA Continuum 1, 229–242 (2018).
[Crossref]

Fan, L.

L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
[Crossref]

Y. Xu, A. A. Sayem, L. Fan, S. Wang, R. Cheng, C.-L. Zou, W. Fu, L. Yang, M. Xu, and H. X. Tang, “Bidirectional electro-optic conversion reaching 1% efficiency with thin-film lithium niobate,” arXiv:2012.14909 (2020).

Fan, S.

A. Dutt, Q. Lin, L. Yuan, M. Minkov, M. Xiao, and S. Fan, “A single photonic cavity with two independent physical synthetic dimensions,” Science 367, 59–64 (2020).
[Crossref]

J. Wang, Y. Shi, and S. Fan, “Non-reciprocal polarization rotation using dynamic refractive index modulation,” Opt. Express 28, 11974–11982 (2020).
[Crossref]

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, “Experimental band structure spectroscopy along a synthetic dimension,” Nat. Commun. 10, 3122 (2019).
[Crossref]

L. Yuan, Q. Lin, A. Zhang, M. Xiao, X. Chen, and S. Fan, “Photonic gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions,” Phys. Rev. Lett. 122, 083903 (2019).
[Crossref]

M. Minkov, D. Gerace, and S. Fan, “Doubly resonant χ(2) nonlinear photonic crystal cavity based on a bound state in the continuum,” Optica 6, 1039–1045 (2019).
[Crossref]

M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S. Fan, and M. Lončar, “Electronically programmable photonic molecule,” Nat. Photonics 13, 36–40 (2019).
[Crossref]

L. Yuan, M. Xiao, Q. Lin, and S. Fan, “Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation,” Phys. Rev. B 97, 104105 (2018).
[Crossref]

L. Yuan, Q. Lin, M. Xiao, and S. Fan, “Synthetic dimension in photonics,” Optica 5, 1396–1405 (2018).
[Crossref]

L. Yuan, D.-W. Wang, and S. Fan, “Synthetic gauge potential and effective magnetic field in a Raman medium undergoing molecular modulation,” Phys. Rev. A 95, 033801 (2017).
[Crossref]

L. Yuan and S. Fan, “Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator,” Optica 3, 1014–1018 (2016).
[Crossref]

Q. Lin, M. Xiao, L. Yuan, and S. Fan, “Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension,” Nat. Commun. 7, 13731 (2016).
[Crossref]

L. Yuan, Y. Shi, and S. Fan, “Photonic gauge potential in a system with a synthetic frequency dimension,” Opt. Lett. 41, 741–744 (2016).
[Crossref]

L. Yuan and S. Fan, “Three-dimensional dynamic localization of light from a time-dependent effective gauge field for photons,” Phys. Rev. Lett. 114, 243901 (2015).
[Crossref]

L. Yuan and S. Fan, “Topologically nontrivial Floquet band structure in a system undergoing photonic transitions in the ultrastrong-coupling regime,” Phys. Rev. A 92, 053822 (2015).
[Crossref]

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photonics 9, 388–392 (2015).
[Crossref]

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8, 701–705 (2014).
[Crossref]

Q. Lin and S. Fan, “Light guiding by effective gauge field for photons,” Phys. Rev. X 4, 031031 (2014).
[Crossref]

K. Fang and S. Fan, “Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation,” Phys. Rev. Lett. 111, 203901 (2013).
[Crossref]

K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108, 153901 (2012).
[Crossref]

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Fang, K.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Express 26, 23728–23739 (2018).
[Crossref]

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8, 701–705 (2014).
[Crossref]

K. Fang and S. Fan, “Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation,” Phys. Rev. Lett. 111, 203901 (2013).
[Crossref]

K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108, 153901 (2012).
[Crossref]

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

Fang, W.

N. Yao, J. Zhou, R. Gao, J. Lin, M. Wang, Y. Cheng, W. Fang, and L. Tong, “Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber,” Opt. Express 28, 12416–12423 (2020).
[Crossref]

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, and Y. Cheng, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43, 4116–4119 (2018).
[Crossref]

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
[Crossref]

Z. Fang, Y. Xu, M. Wang, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “Monolithic integration of a lithium niobate microresonator with a free-standing waveguide using femtosecond laser assisted ion beam writing,” Sci. Rep. 7, 45610 (2017).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China. Ser. G 58, 114209 (2015).
[Crossref]

Fang, Z.

S. Liu, Y. Zheng, Z. Fang, X. Ye, Y. Cheng, and X. Chen, “Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes,” Opt. Lett. 44, 1456–1459 (2019).
[Crossref]

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, and Y. Cheng, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

Z. Fang, S. Haque, J. Lin, R. Wu, J. Zhang, M. Wang, J. Zhou, M. Rafa, T. Lu, and Y. Cheng, “Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator,” Opt. Lett. 44, 1214–1217 (2019).
[Crossref]

J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials (Basel) 9, 1218 (2019).
[Crossref]

M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator,” Quantum Eng. 1, e9 (2019).
[Crossref]

R. Wu, J. Lin, M. Wang, Z. Fang, W. Chu, J. Zhang, J. Zhou, and Y. Cheng, “Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanical polish,” Opt. Lett. 44, 4698–4701 (2019).
[Crossref]

J. Lin, J. Zhou, R. Wu, M. Wang, Z. Fang, W. Chu, J. Zhang, L. Qiao, and Y. Cheng, “High-precision propagation-loss measurement of single-mode optical waveguides on lithium niobate on insulator,” Micromachines (Basel) 10, 612 (2019).
[Crossref]

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness,” Nanomaterials (Basel) 8, 910 (2018).
[Crossref]

Z. Fang, Y. Xu, M. Wang, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “Monolithic integration of a lithium niobate microresonator with a free-standing waveguide using femtosecond laser assisted ion beam writing,” Sci. Rep. 7, 45610 (2017).
[Crossref]

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China. Ser. G 58, 114209 (2015).
[Crossref]

Z. Wang, Z. Fang, Z. Liu, W. Chu, Y. Zhou, J. Zhang, R. Wu, M. Wang, T. Lu, and Y. Cheng, “An on-chip tunable micro-disk laser fabricated on Er3+ doped lithium niobate on insulator (LNOI),” arXiv:2009.08953 (2020).

J. Zhou, Y. Liang, Z. Liu, W. Chu, H. Zhang, D. Yin, Z. Fang, R. Wu, J. Zhang, W. Chen, Z. Wang, Y. Zhou, M. Wang, and Y. Cheng, “On-chip integrated waveguide amplifiers on erbium-doped thin film lithium niobate on insulator,” arXiv:2101.00783 (2021).

Fang, Z.-W.

J.-X. Zhou, R.-H. Gao, J. Lin, M. Wang, W. Chu, W.-B. Li, D.-F. Yin, L. Deng, Z.-W. Fang, J.-H. Zhang, R.-B. Wu, and Y. Cheng, “Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching,” Chin. Phys. Lett. 37, 084201 (2020).
[Crossref]

Fanto, M.

Fanto, M. L.

Faraon, A.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

Farsi, A.

C. Joshi, A. Farsi, A. Dutt, B.-Y. Kim, X. Ji, Y. Zhao, A. M. Bishop, M. Lipson, and A. L. Gaeta, “Frequency-domain quantum interference with correlated photons from an integrated microresonator,” Phys. Rev. Lett. 124, 143601 (2020).
[Crossref]

C. Joshi, A. Farsi, C. Clemmen, S. Ramelow, and A. Gaeta, “Frequency multiplexing for quasi-deterministic heralded single-photon sources,” Nat. Commun. 9, 847 (2018).
[Crossref]

Fassbender, B.

M. C. Wengler, B. Fassbender, E. Soergel, and K. Buse, “Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources,” J. Appl. Phys. 96, 2816–2820 (2004).
[Crossref]

Fathpour, S.

A. Honardoost, K. Abdelsalam, and S. Fathpour, “Rejuvenating a versatile photonic material: thin-film lithium niobate,” Laser Photon. Rev. 14, 2000088 (2020).
[Crossref]

K. Abdelsalam, T. Li, J. B. Khurgin, and S. Fathpour, “Linear isolators using wavelength conversion,” Optica 7, 209–213 (2020).
[Crossref]

B. S. Elkus, K. Abdelsalam, A. Rao, V. Velev, S. Fathpour, P. Kumar, and G. S. Kanter, “Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides,” Opt. Express 27, 38521–38531 (2019).
[Crossref]

A. Rao, K. Abdelsalam, T. Sjaardema, A. Honardoost, G. F. Camacho-Gonzalez, and S. Fathpour, “Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600%W-1cm-2,” Opt. Express 27, 25920–25930 (2019).
[Crossref]

A. Honardoost, F. A. Juneghani, R. Safian, and S. Fathpour, “Towards subterahertz bandwidth ultracompact lithium niobate electrooptic modulators,” Opt. Express 27, 6495–6501 (2019).
[Crossref]

A. Rao and S. Fathpour, “Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics,” IEEE J. Sel. Top. Quantum Electron. 24, 8200912 (2018).
[Crossref]

A. Honardoost, R. Safian, A. Rao, and S. Fathpour, “High-speed modeling of ultracompact electrooptic modulators,” J. Lightwave Technol. 36, 5893–5902 (2018).
[Crossref]

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24, 3400114 (2018).
[Crossref]

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41, 5700–5703 (2016).
[Crossref]

A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24, 29941–29947 (2016).
[Crossref]

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23, 22746–22752 (2015).
[Crossref]

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
[Crossref]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
[Crossref]

Fejer, M.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

Fejer, M. M.

Ferdous, F.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

Fermann, M. E.

Fernandez, J. M.

Ferrari, S.

S. Ferrari, C. Schuck, and W. Pernice, “Waveguide-integrated superconducting nanowire single-photon detectors,” Nanophotonics 7, 1725–1758 (2018).
[Crossref]

Ferré, M.

A. U. Nielsen, Y. Xu, M. Ferré, M. G. Clerc, S. Coen, S. G. Murdoch, and M. Erkintalo, “Engineered discreteness enables observation and control of chimera-like states in a system with local coupling,” arXiv:1910.11329 (2019).

Ferrera, M.

Fink, J. M.

W. Hease, A. Rueda, R. Sahu, M. Wulf, G. Arnold, H. G. L. Schwefel, and J. M. Fink, “Cavity quantum electro-optics: microwave-telecom conversion in the quantum ground state,” PRX Quantum 1, 020315 (2020).
[Crossref]

A. Rueda, F. Sedlmeir, M. C. Collodo, U. Vogl, B. Stiller, G. Schunk, D. V. Strekalov, C. Marquardt, J. M. Fink, O. Painter, G. Leuchs, and H. G. L. Schwefel, “Efficient microwave to optical photon conversion: an electro-optical realization,” Optica 3, 597–604 (2016).
[Crossref]

Fish, G. A.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-power photodiodes with 65 GHz bandwidth heterogeneously integrated onto silicon-on-insulator nano-waveguides,” IEEE J. Sel. Top. Quantum Electron. 24, 6000206 (2018).
[Crossref]

Florez, L. T.

W. K. Chan, A. Yi-Yan, T. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, and J. P. Harbison, “GaAs photodetectors integrated with lithium niobate waveguides,” IEEE Trans. Electron Devices 36, 2627–2628 (1989).
[Crossref]

Fognini, A.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref]

Fong, K. Y.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Fontana, M.

Fontana, M. D.

P. S. Zelenovskiy, V. Y. Shur, P. Bourson, M. D. Fontana, D. K. Kuznetsov, and E. A. Mingaliev, “Raman study of neutral and charged domain walls in lithium niobate,” Ferroelectrics 398, 34–41 (2010).
[Crossref]

Forchel, A.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[Crossref]

Foster, M. A.

Frankis, H. C.

Fredrick, C.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref]

Friedmann, T.

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “Review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Fu, W.

Y. Xu, A. A. Sayem, L. Fan, S. Wang, R. Cheng, C.-L. Zou, W. Fu, L. Yang, M. Xu, and H. X. Tang, “Bidirectional electro-optic conversion reaching 1% efficiency with thin-film lithium niobate,” arXiv:2012.14909 (2020).

Fülöp, A.

Fürst, J.

Fürst, J. U.

G. Lin, J. U. Fürst, D. V. Strekalov, and N. Yu, “Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators,” Appl. Phys. Lett. 103, 181107 (2013).
[Crossref]

Furukawa, Y.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981–1983 (1998).
[Crossref]

Fuste, J. A. I.

Gaathon, O.

Gadalla, M. N.

L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y. I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, “Phononic band structure engineering for high- Q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12, 014022 (2019).
[Crossref]

Gaeta, A.

C. Joshi, A. Farsi, C. Clemmen, S. Ramelow, and A. Gaeta, “Frequency multiplexing for quasi-deterministic heralded single-photon sources,” Nat. Commun. 9, 847 (2018).
[Crossref]

Gaeta, A. L.

C. Joshi, A. Farsi, A. Dutt, B.-Y. Kim, X. Ji, Y. Zhao, A. M. Bishop, M. Lipson, and A. L. Gaeta, “Frequency-domain quantum interference with correlated photons from an integrated microresonator,” Phys. Rev. Lett. 124, 143601 (2020).
[Crossref]

Y. Okawachi, M. Yu, B. Desiatov, B. Y. Kim, T. Hansson, M. Lončar, and A. L. Gaeta, “Chip-based self-referencing using integrated lithium niobate waveguides,” Optica 7, 702–707 (2020).
[Crossref]

M. Yu, Y. Okawachi, R. Cheng, C. Wang, M. Zhang, A. L. Gaeta, and M. Lončar, “Raman lasing and soliton mode-locking in lithium niobate microresonators,” Light Sci Appl 9, 9 (2020).
[Crossref]

M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Lončar, “Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides,” Opt. Lett. 44, 1222–1225 (2019).
[Crossref]

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13, 158–169 (2019).
[Crossref]

D. Waldburger, A. S. Mayer, C. G. E. Alfieri, J. Nürnberg, A. R. Johnson, X. Ji, A. Klenner, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Tightly locked optical frequency comb from a semiconductor disk laser,” Opt. Express 27, 1786–1797 (2019).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

Y. Okawachi, M. Yu, J. Cardenas, X. Ji, A. Klenner, M. Lipson, and A. L. Gaeta, “Carrier envelope offset detection via simultaneous supercontinuum and second-harmonic generation in a silicon nitride waveguide,” Opt. Lett. 43, 4627–4630 (2018).
[Crossref]

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

Y. Okawachi, M. Yu, J. Cardenas, X. Ji, M. Lipson, and A. L. Gaeta, “Coherent, directional supercontinuum generation,” Opt. Lett. 42, 4466–4469 (2017).
[Crossref]

A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24, 11043–11053 (2016).
[Crossref]

A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120 (2015).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
[Crossref]

M. Yu, L. Shao, Y. Okawachi, A. L. Gaeta, and M. Loncar, “Ultraviolet to mid-infrared supercontinuum generation in lithium-niobate waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2020), paper STu4H.1.

Galli, G.

S. J. Whiteley, G. Wolfowicz, C. P. Anderson, A. Bourassa, H. Ma, M. Ye, G. Koolstra, K. J. Satzinger, M. V. Holt, F. J. Heremans, A. N. Cleland, D. I. Schuster, G. Galli, and D. D. Awschalom, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nat. Phys. 15, 490–495 (2019).
[Crossref]

Gallo, K.

Gan, L.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science 370, 1460–1463 (2020).
[Crossref]

Gao, A.

Gao, F.

Gao, J.

Gao, R.

N. Yao, J. Zhou, R. Gao, J. Lin, M. Wang, Y. Cheng, W. Fang, and L. Tong, “Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber,” Opt. Express 28, 12416–12423 (2020).
[Crossref]

J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials (Basel) 9, 1218 (2019).
[Crossref]

Gao, R.-H.

J.-X. Zhou, R.-H. Gao, J. Lin, M. Wang, W. Chu, W.-B. Li, D.-F. Yin, L. Deng, Z.-W. Fang, J.-H. Zhang, R.-B. Wu, and Y. Cheng, “Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching,” Chin. Phys. Lett. 37, 084201 (2020).
[Crossref]

Gao, S.

S. Sun, M. He, M. Xu, S. Gao, S. Yu, and X. Cai, “Hybrid silicon and lithium niobate modulator,” IEEE J. Sel. Top. Quantum Electron. 27, 3300112 (2021).
[Crossref]

S. Sun, M. He, M. Xu, S. Gao, Z. Chen, X. Zhang, Z. Ruan, X. Wu, L. Zhou, L. Liu, C. Lu, C. Guo, L. Liu, S. Yu, and X. Cai, “Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform,” Photon. Res. 8, 1958–1963 (2020).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Gao, X.

Z. Hao, L. Zhang, W. Mao, A. Gao, X. Gao, F. Gao, F. Bo, G. Zhang, and J. Xu, “Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators,” Photon. Res. 8, 311–317 (2020).
[Crossref]

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China. Phys. Mech. Astron. 61, 114211 (2018).
[Crossref]

Garcia-Granda, M.

García-Granda, M.

D. Janner, D. Tulli, M. García-Granda, M. Belmonte, and V. Pruneri, “Micro-structured integrated electro-optic LiNbO3 modulators,” Laser Photon. Rev. 3, 301–313 (2009).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Ge, L.

Gee, C. M.

C. M. Gee, G. D. Thurmond, H. Blauvelt, and H. W. Yen, “Minimizing dc drift in LiNbO3 waveguide devices,” Appl. Phys. Lett. 47, 211–213 (1985).
[Crossref]

Gehl, M.

Geiselmann, M.

Geiss, R.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

R. Geiss, J. Brandt, H. Hartung, A. Tünnermann, T. Pertsch, E.-B. Kley, and F. Schrempel, “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching,” J. Vac. Sci. Technol. B 33, 010601 (2015).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

Genty, G.

Gerace, D.

Gerardot, B. D.

Gerrits, T.

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photon. 4, 056103 (2019).
[Crossref]

J. P. Höpker, M. Bartnick, E. Meyer-Scott, F. Thiele, T. Meier, T. Bartley, S. Krapick, N. M. Montaut, M. Santandrea, H. Herrmann, S. Lengeling, R. Ricken, V. Quiring, A. E. Lita, V. B. Verma, T. Gerrits, S. W. Nam, and C. Silberhorn, “Towards integrated superconducting detectors on lithium niobate waveguides,” Proc. SPIE 10358, 1035809 (2017).
[Crossref]

Gerson, R.

R. Gerson, J. F. Kirchhoff, L. E. Halliburton, and D. A. Bryan, “Photoconductivity parameters in lithium niobate,” J. Appl. Phys. 60, 3553–3557 (1986).
[Crossref]

Gertler, S.

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

Ghione, G.

G. Ghione, “Chapter 6: Modulators,” in Semiconductor Devices for High-Speed Optoelectronics (Cambridge University, 2009).

Ghosh, J.

R. Kumar and J. Ghosh, “Joint spectral amplitude analysis of SPDC photon pairs in a multimode ppLN ridge waveguide,” arXiv:1906.10344 (2019).

Giaccari, P.

D. Pohl, M. Reig Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2020).
[Crossref]

Gille, S.

Gisin, N.

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002).
[Crossref]

Gitmans, F.

F. Gitmans, Z. Sitar, and P. Günter, “Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy,” Vacuum 46, 939–942 (1995).
[Crossref]

Gmitter, T.

W. K. Chan, A. Yi-Yan, T. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, and J. P. Harbison, “GaAs photodetectors integrated with lithium niobate waveguides,” IEEE Trans. Electron Devices 36, 2627–2628 (1989).
[Crossref]

Gocalinska, A.

J. Zhang, G. Muliuk, J. Juvert, S. Kumari, J. Goyvaerts, B. Haq, C. Op de Beeck, B. Kuyken, G. Morthier, D. Van Thourhout, R. Baets, G. Lepage, P. Verheyen, J. Van Campenhout, A. Gocalinska, J. O’Callaghan, E. Pelucchi, K. Thomas, B. Corbett, A. J. Trindade, and G. Roelkens, “III-V-on-Si photonic integrated circuits realized using micro-transfer-printing,” APL Photon. 4, 110803 (2019).
[Crossref]

J. Zhang, B. Haq, J. O’Callaghan, A. Gocalinska, E. Pelucchi, A. J. Trindade, B. Corbett, G. Morthier, and G. Roelkens, “Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser,” Opt. Express 26, 8821–8830 (2018).
[Crossref]

Godbout, N.

Goddard, L. L.

Gol’tsman, G. N.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Goldman, N.

T. Ozawa, H. M. Price, N. Goldman, O. Zilberberg, and I. Carusotto, “Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics,” Phys. Rev. A 93, 043827 (2016).
[Crossref]

Goldner, P.

T. Zhong and P. Goldner, “Emerging rare-earth doped material platforms for quantum nanophotonics,” Nanophotonics 8, 2003–2015 (2019).
[Crossref]

Goldschmidt, E. A.

S. Dutta, E. A. Goldschmidt, S. Barik, U. Saha, and E. Waks, “Integrated photonic platform for rare-earth ions in thin film lithium niobate,” Nano Lett. 20, 741–747 (2020).
[Crossref]

Golikov, A.

E. Smirnov, A. Golikov, P. Zolotov, V. Kovalyuk, M. Lobino, B. Voronov, A. Korneev, and G. Goltsman, “Superconducting nanowire single-photon detector on lithium niobate,” J. Phys. Conf. Ser. 1124, 051025 (2018).
[Crossref]

Goltsman, G.

E. Smirnov, A. Golikov, P. Zolotov, V. Kovalyuk, M. Lobino, B. Voronov, A. Korneev, and G. Goltsman, “Superconducting nanowire single-photon detector on lithium niobate,” J. Phys. Conf. Ser. 1124, 051025 (2018).
[Crossref]

Gong, Q.

L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y.-F. Xiao, “High-Q chaotic lithium niobate microdisk cavity,” Opt. Lett. 43, 2917–2920 (2018).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Gong, S.

Gong, Y.-X.

Y. Niu, C. Lin, X. Liu, Y. Chen, X. Hu, Y. Zhang, X. Cai, Y.-X. Gong, Z. Xie, and S. Zhu, “Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains,” Appl. Phys. Lett. 116, 101104 (2020).
[Crossref]

Gong, Z.

Z. Gong, X. Liu, Y. Xu, and H. X. Tang, “Near-octave lithium niobate soliton microcomb,” Optica 7, 1275–1278 (2020).
[Crossref]

Z. Gong, M. Li, X. Liu, Y. Xu, J. Lu, A. Bruch, J. B. Surya, C. Zou, and H. X. Tang, “Photonic dissipation control for Kerr soliton generation in strongly Raman-active media,” Phys. Rev. Lett. 125, 183901 (2020).
[Crossref]

Z. Gong, X. Liu, Y. Xu, M. Xu, J. B. Surya, J. Lu, A. Bruch, C. Zou, and H. X. Tang, “Soliton microcomb generation at 2 µm in z-cut lithium niobate microring resonators,” Opt. Lett. 44, 3182–3185 (2019).
[Crossref]

J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W,” Optica 6, 1455–1460 (2019).
[Crossref]

L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
[Crossref]

Goorsky, M. S.

M. B. Tellekamp, J. C. Shank, M. S. Goorsky, and W. A. Doolittle, “Molecular beam epitaxy growth of high crystalline quality LiNbO3,” J. Electron. Mater. 45, 6292–6299 (2016).
[Crossref]

Gopalan, V.

V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res. 37, 449–489 (2007).
[Crossref]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981–1983 (1998).
[Crossref]

Gordon, I. E.

R. V. Kochanov, I. E. Gordon, L. S. Rothman, K. P. Shine, S. W. Sharpe, T. J. Johnson, T. J. Wallington, J. J. Harrison, P. F. Bernath, M. Birk, G. Wagner, K. Le Bris, I. Bravo, and C. Hill, “REPRINT OF: Infrared absorption cross-sections in HITRAN2016 and beyond: expansion for climate, environment, and atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 238, 106708 (2019).
[Crossref]

Gorelik, V. S.

V. S. Gorelik and P. P. Sverbil’, “Raman scattering by longitudinal and transverse optical vibrations in lithium niobate single crystals,” Inorg. Mater. 51, 1104–1110 (2015).
[Crossref]

Gorodetsky, M. L.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

Goyvaerts, J.

J. Zhang, G. Muliuk, J. Juvert, S. Kumari, J. Goyvaerts, B. Haq, C. Op de Beeck, B. Kuyken, G. Morthier, D. Van Thourhout, R. Baets, G. Lepage, P. Verheyen, J. Van Campenhout, A. Gocalinska, J. O’Callaghan, E. Pelucchi, K. Thomas, B. Corbett, A. J. Trindade, and G. Roelkens, “III-V-on-Si photonic integrated circuits realized using micro-transfer-printing,” APL Photon. 4, 110803 (2019).
[Crossref]

Gradkowski, K.

Grange, R.

Green, W. M. J.

Griffin, B.

V. E. Stenger, J. Toney, A. PoNick, D. Brown, B. Griffin, R. Nelson, and S. Sriram, “Low loss and low vpi thin film lithium niobate on quartz electro-optic modulators,” in European Conference on Optical Communication (ECOC) (IEEE, 2017).

V. E. Stenger, J. Toney, A. PoNick, D. Brown, B. Griffin, R. Nelson, and S. Sriram, “Low loss and low Vpi thin film lithium niobate on quartz electro-optic modulators,” in European Conference on Optical Communication (ECOC) (2017), pp. 1–3.

Griffiths, J. P.

D. J. P. Ellis, A. J. Bennett, C. Dangel, J. P. Lee, J. P. Griffiths, T. A. Mitchell, T.-K. Paraiso, P. Spencer, D. A. Ritchie, and A. J. Shields, “Independent indistinguishable quantum light sources on a reconfigurable photonic integrated circuit,” Appl. Phys. Lett. 112, 211104 (2018).
[Crossref]

Griffiths, P. R.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007).

Grillet, C.

Gruverman, A.

A. L. Kholkin, S. V. Kalinin, A. Roelofs, and A. Gruverman, “Review of ferroelectric domain imaging by piezoresponse force microscopy,” in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, S. Kalinin and A. Gruverman, eds. (Springer, 2007), pp. 173–214.

Guangyuan, S.

D. Jun, J. Wei, C. E. Png, S. Guangyuan, J. Son, H. Yang, and A. J. Danner, “Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas,” J. Vac. Sci. Technol. B 30, 011208 (2012).
[Crossref]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Guha, S.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

Gui, L.

H. Hu, L. Gui, R. Ricken, and W. Sohler, “Towards nonlinear photonic wires in lithium niobate,” Proc. SPIE 7604, 76040R (2010).
[Crossref]

L. Gui, H. Hu, M. Garcia-Granda, and W. Sohler, “Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation,” Opt. Express 17, 3923–3928 (2009).
[Crossref]

L. Gui, Periodically Poled Ridge Waveguides and Photonic Wires in LiNbO3 for Efficient Nonlinear Interactions (University of Paderborn, 2010).

Guichardaz, B.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D 44, 305101 (2011).
[Crossref]

G. Ulliac, B. Guichardaz, J.-Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88, 2417–2419 (2011).
[Crossref]

Guidry, M. A.

D. M. Lukin, C. Dory, M. A. Guidry, K. Y. Yang, S. D. Mishra, R. Trivedi, M. Radulaski, S. Sun, D. Vercruysse, G. H. Ahn, and J. Vučković, “4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics,” Nat. Photonics 14, 330–334 (2020).
[Crossref]

Guilbert, L.

Guilloux-Viry, M.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-Viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90, 5274–5277 (2001).
[Crossref]

Guldimann, B.

D. Pohl, M. Reig Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2020).
[Crossref]

Gunji, S.

Y. Nakata, S. Gunji, T. Okada, and M. Maeda, “Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties,” Appl. Phys. A 79, 1279–1282 (2004).
[Crossref]

Gunter, P.

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603–4605 (2004).
[Crossref]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

F. Gitmans, Z. Sitar, and P. Günter, “Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy,” Vacuum 46, 939–942 (1995).
[Crossref]

P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications 1: Basic Effects (Springer, 2005).

Guo, C.

S. Sun, M. He, M. Xu, S. Gao, Z. Chen, X. Zhang, Z. Ruan, X. Wu, L. Zhou, L. Liu, C. Lu, C. Guo, L. Liu, S. Yu, and X. Cai, “Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform,” Photon. Res. 8, 1958–1963 (2020).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Guo, G.-C.

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref]

C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref]

C.-L. Zou, J.-M. Cui, F.-W. Sun, X. Xiong, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators,” Laser Photon. Rev. 9, 114–119 (2015).
[Crossref]

Guo, H.

Guo, X.

L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
[Crossref]

X. Guo, C.-L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3, 1126–1131 (2016).
[Crossref]

Gustafsson, M. V.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

Gustavsson, S.

M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver, “Superconducting qubits: current state of play,” Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).
[Crossref]

Gutbrod, T.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[Crossref]

Gylfason, K. B.

Hadfield, R. H.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012).
[Crossref]

Haga, E. M.

H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Cryst. Growth 187, 573–576 (1998).
[Crossref]

Hagan, D. J.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

Hahn, W.

S. Sanna, G. Berth, W. Hahn, A. Widhalm, A. Zrenner, and W. G. Schmidt, “Localised phonon modes at LiNbO3 (0001) surfaces,” Ferroelectrics 419, 1–8 (2011).
[Crossref]

Halir, R.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–640 (2000).
[Crossref]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “Review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Halliburton, L. E.

R. Gerson, J. F. Kirchhoff, L. E. Halliburton, and D. A. Bryan, “Photoconductivity parameters in lithium niobate,” J. Appl. Phys. 60, 3553–3557 (1986).
[Crossref]

Hamerly, R.

R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, and D. Englund, “Large-scale optical neural networks based on photoelectric multiplication,” Phys. Rev. X 9, 021032 (2019).
[Crossref]

Hamidi, E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

Hammani, K.

Han, X.

L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, and H. X. Tang, “Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv. 4, eaar4994 (2018).
[Crossref]

Han, Z.-F.

C.-L. Zou, J.-M. Cui, F.-W. Sun, X. Xiong, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators,” Laser Photon. Rev. 9, 114–119 (2015).
[Crossref]

Hangran, C. H. U.

Hansch, T. W.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

Hänsch, T. W.

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13, 146–157 (2019).
[Crossref]

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6, e17076 (2017).
[Crossref]

Hansson, T.

Hao, X.

Hao, Z.

Q. Luo, Z. Hao, C. Yang, R. Zhang, D. Zheng, S. Liu, H. Liu, F. Bo, Y. Kong, G. Zhang, and J. Xu, “Microdisk lasers on an erbium-doped lithium-niobite chip,” Sci. China Phys. Mech. Astron. 64, 100504 (2021).
[Crossref]

Z. Hao, L. Zhang, W. Mao, A. Gao, X. Gao, F. Gao, F. Bo, G. Zhang, and J. Xu, “Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators,” Photon. Res. 8, 311–317 (2020).
[Crossref]

L. Zhang, Z. Hao, Q. Luo, A. Gao, R. Zhang, C. Yang, F. Gao, F. Bo, G. Zhang, and J. Xu, “Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes,” Opt. Lett. 45, 3353–3356 (2020).
[Crossref]

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, and Y. Cheng, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China. Phys. Mech. Astron. 61, 114211 (2018).
[Crossref]

Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photon. Res. 5, 623–628 (2017).
[Crossref]

Haq, B.

J. Zhang, G. Muliuk, J. Juvert, S. Kumari, J. Goyvaerts, B. Haq, C. Op de Beeck, B. Kuyken, G. Morthier, D. Van Thourhout, R. Baets, G. Lepage, P. Verheyen, J. Van Campenhout, A. Gocalinska, J. O’Callaghan, E. Pelucchi, K. Thomas, B. Corbett, A. J. Trindade, and G. Roelkens, “III-V-on-Si photonic integrated circuits realized using micro-transfer-printing,” APL Photon. 4, 110803 (2019).
[Crossref]

J. Zhang, B. Haq, J. O’Callaghan, A. Gocalinska, E. Pelucchi, A. J. Trindade, B. Corbett, G. Morthier, and G. Roelkens, “Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser,” Opt. Express 26, 8821–8830 (2018).
[Crossref]

Haque, S.

Harbison, J. P.

W. K. Chan, A. Yi-Yan, T. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, and J. P. Harbison, “GaAs photodetectors integrated with lithium niobate waveguides,” IEEE Trans. Electron Devices 36, 2627–2628 (1989).
[Crossref]

Harris, N. C.

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophotonic processors,” Optica 5, 1623–1631 (2018).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Harrison, J. J.

R. V. Kochanov, I. E. Gordon, L. S. Rothman, K. P. Shine, S. W. Sharpe, T. J. Johnson, T. J. Wallington, J. J. Harrison, P. F. Bernath, M. Birk, G. Wagner, K. Le Bris, I. Bravo, and C. Hill, “REPRINT OF: Infrared absorption cross-sections in HITRAN2016 and beyond: expansion for climate, environment, and atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 238, 106708 (2019).
[Crossref]

Hartl, I.

Hartung, H.

R. Geiss, J. Brandt, H. Hartung, A. Tünnermann, T. Pertsch, E.-B. Kley, and F. Schrempel, “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching,” J. Vac. Sci. Technol. B 33, 010601 (2015).
[Crossref]

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

He, J.-Y.

He, L.

K. Luke, P. Kharel, C. Reimer, L. He, M. Loncar, and M. Zhang, “Wafer-scale low-loss lithium niobate photonic integrated circuits,” Opt. Express 28, 24452–24458 (2020).
[Crossref]

L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, and M. Loncar, “Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits,” Opt. Lett. 44, 2314–2317 (2019).
[Crossref]

P. Kharel, C. Reimer, K. Luke, L. He, and M. Zhang, “Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes,” arXiv:2011.13422 (2020).

M. Zhang, C. Reimer, L. He, R. Cheng, M. Yu, R. Zhu, and M. Loncar, “Microresonator frequency comb generation with simultaneous Kerr and electro-optic nonlinearities,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2019), pp. 1–2.

He, M.

S. Sun, M. He, M. Xu, S. Gao, S. Yu, and X. Cai, “Hybrid silicon and lithium niobate modulator,” IEEE J. Sel. Top. Quantum Electron. 27, 3300112 (2021).
[Crossref]

S. Sun, M. He, M. Xu, S. Gao, Z. Chen, X. Zhang, Z. Ruan, X. Wu, L. Zhou, L. Liu, C. Lu, C. Guo, L. Liu, S. Yu, and X. Cai, “Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform,” Photon. Res. 8, 1958–1963 (2020).
[Crossref]

M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, and X. Cai, “High-performance coherent optical modulators based on thin-film lithium niobate platform,” Nat. Commun. 11, 3911 (2020).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26, 29651–29658 (2018).
[Crossref]

Y. Pan, S. Sun, M. Xu, M. He, S. Yu, and X. Cai, “Low fiber-to-fiber loss, large bandwidth and low drive voltage lithium niobate on insulator modulators,” in Conference on Lasers and Electro-Optics (OSA, 2020).

M. Xu, M. He, S. Yu, and X. Cai, “Thin-film lithium niobate modulator based on distributed Bragg grating resonators,” in Asia Communications and Photonics Conference (ACPC) (Optical Society of America, 2019), paper S4D.5.

Y. Zhang, M. Xu, H. Zhang, M. Li, J. Jian, M. He, L. Chen, L. Wang, X. Cai, X. Xiao, and S. Yu, “220 Gbit/s optical PAM4 modulation based on lithium niobate on insulator modulator,” in 45th European Conference on Optical Communication (ECOC) (2019), pp. 1–4.

M. Xu, M. He, and X. Cai, “Generation of flat optical frequency comb using integrated cascaded lithium niobate modulators,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2020), paper STh1O.5.

He, Y.

M. Li, J. Ling, Y. He, U. A. Javid, S. Xue, and Q. Lin, “Lithium niobate photonic-crystal electro-optic modulator,” Nat. Commun. 11, 4123 (2020).
[Crossref]

J. Ling, Y. He, R. Luo, M. Li, H. Liang, and Q. Lin, “Athermal lithium niobate microresonator,” Opt. Express 28, 21682–21691 (2020).
[Crossref]

Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “Self-starting bi-chromatic LiNbO3 soliton microcomb,” Optica 6, 1138–1144 (2019).
[Crossref]

M. Li, H. Liang, R. Luo, Y. He, J. Ling, and Q. Lin, “Photon-level tuning of photonic nanocavities,” Optica 6, 860–863 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

M. Li, H. Liang, R. Luo, Y. He, and Q. Lin, “High-Q 2D lithium niobate photonic crystal slab nanoresonators,” Laser Photon. Rev. 13, 1800228 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev. 13, 1800288 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

Y. He, H. Liang, R. Luo, M. Li, and Q. Lin, “Dispersion engineered high quality lithium niobate microring resonators,” Opt. Express 26, 16315–16322 (2018).
[Crossref]

H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4, 1251–1258 (2017).
[Crossref]

R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, “On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator,” Opt. Express 25, 24531–24539 (2017).
[Crossref]

U. A. Javid, J. Ling, J. Staffa, M. Li, Y. He, and Q. Lin, “Ultra-broadband entangled photons on a nanophotonic chip,” arXiv:2101.04877 (2021).

Heard, P. J.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
[Crossref]

Hease, W.

W. Hease, A. Rueda, R. Sahu, M. Wulf, G. Arnold, H. G. L. Schwefel, and J. M. Fink, “Cavity quantum electro-optics: microwave-telecom conversion in the quantum ground state,” PRX Quantum 1, 020315 (2020).
[Crossref]

Heck, M. J. R.

M. J. R. Heck, “Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics 6, 93–107 (2017).
[Crossref]

D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014).
[Crossref]

Heideman, R. G.

Hellwig, T.

Henry, C. H.

C. H. Henry and J. J. Hopfield, “Raman scattering by polaritons,” Phys. Rev. Lett. 15, 964–966 (1965).
[Crossref]

Heremans, F. J.

S. J. Whiteley, G. Wolfowicz, C. P. Anderson, A. Bourassa, H. Ma, M. Ye, G. Koolstra, K. J. Satzinger, M. V. Holt, F. J. Heremans, A. N. Cleland, D. I. Schuster, G. Galli, and D. D. Awschalom, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nat. Phys. 15, 490–495 (2019).
[Crossref]

Herkommer, C.

Herman, I. P.

Hermann, H.

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24, 1012–1015 (2006).
[Crossref]

Herr, S. J.

Herrmann, H.

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photon. 4, 056103 (2019).
[Crossref]

J. P. Höpker, M. Bartnick, E. Meyer-Scott, F. Thiele, T. Meier, T. Bartley, S. Krapick, N. M. Montaut, M. Santandrea, H. Herrmann, S. Lengeling, R. Ricken, V. Quiring, A. E. Lita, V. B. Verma, T. Gerrits, S. W. Nam, and C. Silberhorn, “Towards integrated superconducting detectors on lithium niobate waveguides,” Proc. SPIE 10358, 1035809 (2017).
[Crossref]

Herrmann, J. F.

Hickstein, D. D.

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42, 2314–2317 (2017).
[Crossref]

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Higurashi, E.

Hill, C.

R. V. Kochanov, I. E. Gordon, L. S. Rothman, K. P. Shine, S. W. Sharpe, T. J. Johnson, T. J. Wallington, J. J. Harrison, P. F. Bernath, M. Birk, G. Wagner, K. Le Bris, I. Bravo, and C. Hill, “REPRINT OF: Infrared absorption cross-sections in HITRAN2016 and beyond: expansion for climate, environment, and atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 238, 106708 (2019).
[Crossref]

Hill, J. T.

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

Ho, K.

K. Ho and J. M. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” IEEE Photon. Technol. Lett. 5, 721–725 (1993).
[Crossref]

Hochberg, M.

Hoekman, M.

Höfling, S.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Holman, R. L.

V. E. Wood, P. J. Cressman, R. L. Holman, and C. M. Verber, Photorefractive Effects in Waveguides, Photorefractive Materials and Their Applications II. Topics in Applied Physics, P. Günter and J. P. Huignard, eds. (Springer, 1989), Vol. 62.

Holt, M. V.

S. J. Whiteley, G. Wolfowicz, C. P. Anderson, A. Bourassa, H. Ma, M. Ye, G. Koolstra, K. J. Satzinger, M. V. Holt, F. J. Heremans, A. N. Cleland, D. I. Schuster, G. Galli, and D. D. Awschalom, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nat. Phys. 15, 490–495 (2019).
[Crossref]

Holzgrafe, J.

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” Optica 7, 1714–1720 (2020).
[Crossref]

Y. Hu, M. Yu, D. Zhu, N. Sinclair, A. Shams-Ansari, L. Shao, J. Holzgrafe, E. Puma, M. Zhang, and M. Loncar, “Reconfigurable electro-optic frequency shifter,” arXiv:2005.09621 (2020).

M. Colangelo, B. Desiatov, D. Zhu, J. Holzgrafe, O. Medeiros, M. Loncar, and K. K. Berggren, “Superconducting nanowire single-photon detector on thin- film lithium niobate photonic waveguide,” in CLEO: Science and Innovations (2020), paper SM4O.4.

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Loncar, “Toward efficient microwave-optical transduction using cavity electro-optics in thin-film lithium niobate,” in Conference on Lasers and Electro-Optics (OSA, 2020).

Holzwarth, R.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

Honardoost, A.

Hood, D.

Hopfield, J. J.

C. H. Henry and J. J. Hopfield, “Raman scattering by polaritons,” Phys. Rev. Lett. 15, 964–966 (1965).
[Crossref]

Höpker, J. P.

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photon. 4, 056103 (2019).
[Crossref]

J. P. Höpker, M. Bartnick, E. Meyer-Scott, F. Thiele, T. Meier, T. Bartley, S. Krapick, N. M. Montaut, M. Santandrea, H. Herrmann, S. Lengeling, R. Ricken, V. Quiring, A. E. Lita, V. B. Verma, T. Gerrits, S. W. Nam, and C. Silberhorn, “Towards integrated superconducting detectors on lithium niobate waveguides,” Proc. SPIE 10358, 1035809 (2017).
[Crossref]

Hosseini, M.

D. Pak, H. An, A. Nandi, X. Jiang, Y. Xuan, and M. Hosseini, “Ytterbium-implanted photonic resonators based on thin film lithium niobate,” J. Appl. Phys. 128, 084302 (2020).
[Crossref]

Hu, C.

C. Hu, A. Pan, T. Li, X. Wang, Y. Liu, S. Tao, C. Zeng, and J. Xia, “High-efficient and polarization independent edge coupler for thin-film lithium niobite waveguide devices,” arXiv:2009.02855 (2020).

Hu, E.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y. I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, “Phononic band structure engineering for high- Q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12, 014022 (2019).
[Crossref]

Hu, H.

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10, 978 (2019).
[Crossref]

Y. Wang, Z. Chen, L. Cai, Y. Jiang, H. Zhu, and H. Hu, “Amorphous silicon-lithium niobate thin film strip-loaded waveguides,” Opt. Mater. Express 7, 4018–4028 (2017).
[Crossref]

Z. Chen, R. Peng, Y. Wang, H. Zhu, and H. Hu, “Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector,” Opt. Mater. Express 7, 4010–4017 (2017).
[Crossref]

Z. Chen, Y. Wang, Y. Jiang, R. Kong, and H. Hu, “Grating coupler on single-crystal lithium niobate thin film,” Opt. Mater. 72, 136–139 (2017).
[Crossref]

L. Cai, Y. Kang, and H. Hu, “Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film,” Opt. Express 24, 4640–4647 (2016).
[Crossref]

S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23, 24212–24219 (2015).
[Crossref]

L. Cai, R. Kong, Y. Wang, and H. Hu, “Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film,” Opt. Express 23, 29211–29221 (2015).
[Crossref]

L. Cai, Y. Wang, and H. Hu, “Low-loss waveguides in a single-crystal lithium niobate thin film,” Opt. Lett. 40, 3013–3016 (2015).
[Crossref]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

H. Hu, L. Gui, R. Ricken, and W. Sohler, “Towards nonlinear photonic wires in lithium niobate,” Proc. SPIE 7604, 76040R (2010).
[Crossref]

L. Gui, H. Hu, M. Garcia-Granda, and W. Sohler, “Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation,” Opt. Express 17, 3923–3928 (2009).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17, 24261–24268 (2009).
[Crossref]

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett. 19, 417–419 (2007).
[Crossref]

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24, 1012–1015 (2006).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Large area, crystal-bonded LiNbO3 thin films and ridge waveguides of high refractive index contrast,” in Proc. Topical Meeting “Photorefractive Materials, Effects, and Devices-Control of Light and Matter”(PR09), Bad Honnef, Germany (2009).

Hu, P.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science 370, 1460–1463 (2020).
[Crossref]

Hu, X.

Y. Niu, C. Lin, X. Liu, Y. Chen, X. Hu, Y. Zhang, X. Cai, Y.-X. Gong, Z. Xie, and S. Zhu, “Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains,” Appl. Phys. Lett. 116, 101104 (2020).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Hu, Y.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science 370, 1460–1463 (2020).
[Crossref]

Y. Hu, C. Reimer, A. Shams-Ansari, M. Zhang, and M. Loncar, “Realization of high-dimensional frequency crystals in electro-optic microcombs,” Optica 7, 1189–1194 (2020).
[Crossref]

L. Shao, N. Sinclair, J. Leatham, Y. Hu, M. Yu, T. Turpin, D. Crowe, and M. Lončar, “Integrated microwave acousto-optic frequency shifter on thin-film lithium niobate,” Opt. Express 28, 23728–23738 (2020).
[Crossref]

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” Optica 7, 1714–1720 (2020).
[Crossref]

M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S. Fan, and M. Lončar, “Electronically programmable photonic molecule,” Nat. Photonics 13, 36–40 (2019).
[Crossref]

Y. Hu, M. Yu, D. Zhu, N. Sinclair, A. Shams-Ansari, L. Shao, J. Holzgrafe, E. Puma, M. Zhang, and M. Loncar, “Reconfigurable electro-optic frequency shifter,” arXiv:2005.09621 (2020).

L. Shao, D. Zhu, M. Colangelo, D. H. Lee, N. Sinclair, Y. Hu, P. T. Rakich, K. Lai, K. K. Berggren, and M. Loncar, “Electrical control of surface acoustic waves,” arXiv:2101.01626 (2021).

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Loncar, “Toward efficient microwave-optical transduction using cavity electro-optics in thin-film lithium niobate,” in Conference on Lasers and Electro-Optics (OSA, 2020).

Huang, C. Y.

Huang, C.-B.

C.-B. Huang, Z. Jiang, D. Leaird, J. Caraquitena, and A. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2, 227–248 (2008).
[Crossref]

Huang, H.-C.

Huang, I.-C.

Huang, L.

G. Qian, L. Huang, F. Zhou, J. Tang, X. Chen, Y. Kong, and T. Chen, “Design and fabrication of cantilevered fiber-to-waveguide mode size converter for thin-film lithium niobate photonic integrated circuits,” Proc. SPIE 11455, 1145587 (2020).
[Crossref]

Huang, S.-W.

Huang, Y. C.

Huang, Y.-P.

Hudson, D. D.

Hui, H.

H. Hui, R. Ricken, and W. Sohler, “Etching of lithium niobate: from ridge waveguides to photonic crystal structures,” in ECIO, Eindhoven, The Netherlands (2008).

Huignard, J.-P.

P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications 1: Basic Effects (Springer, 2005).

Ia, J. I. X.

Iizuka, T.

N. Ohnishi and T. Iizuka, “Etching study of microdomains in LiNbO3 single crystals,” J. Appl. Phys. 46, 1063–1067 (1975).
[Crossref]

Ilchenko, V. S.

Ilday, F. O.

Ilday, F. Ö.

Imany, P.

H.-H. Lu, J. M. Lukens, B. P. Williams, P. Imany, N. A. Peters, A. M. Weiner, and P. Lougovski, “A controlled-NOT gate for frequency-bin qubits,” npj Quantum Inf. 5, 24 (2019).
[Crossref]

Iodice, M.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
[Crossref]

Ippen, E.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 µm to beyond 2.4 µm,” Light Sci. Appl. 7, 17131 (2018).
[Crossref]

Iwakuni, K.

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6, e17076 (2017).
[Crossref]

Izutsu, M.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17, 2225–2227 (1981).
[Crossref]

Jackel, J. L.

W. K. Chan, A. Yi-Yan, T. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, and J. P. Harbison, “GaAs photodetectors integrated with lithium niobate waveguides,” IEEE Trans. Electron Devices 36, 2627–2628 (1989).
[Crossref]

Jackson, S. D.

Jacob-Mitos, M.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-power photodiodes with 65 GHz bandwidth heterogeneously integrated onto silicon-on-insulator nano-waveguides,” IEEE J. Sel. Top. Quantum Electron. 24, 6000206 (2018).
[Crossref]

Jacquier, B.

G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2006).

Jalali, B.

Jankowski, M.

Janner, D.

D. Janner, D. Tulli, M. García-Granda, M. Belmonte, and V. Pruneri, “Micro-structured integrated electro-optic LiNbO3 modulators,” Laser Photon. Rev. 3, 301–313 (2009).
[Crossref]

Javid, U. A.

M. Li, J. Ling, Y. He, U. A. Javid, S. Xue, and Q. Lin, “Lithium niobate photonic-crystal electro-optic modulator,” Nat. Commun. 11, 4123 (2020).
[Crossref]

J. Zhao, M. Rüsing, U. A. Javid, J. Ling, M. Li, Q. Lin, and S. Mookherjea, “Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation,” Opt. Express 28, 19669–19682 (2020).
[Crossref]

U. A. Javid, J. Ling, J. Staffa, M. Li, Y. He, and Q. Lin, “Ultra-broadband entangled photons on a nanophotonic chip,” arXiv:2101.04877 (2021).

Jen, A. K.-Y.

J. D. Witmer, T. P. McKenna, P. Arrangoiz-Arriola, R. Van Laer, E. Alex Wollack, F. Lin, A. K.-Y. Jen, J. Luo, and A. H. Safavi-Naeini, “A silicon-organic hybrid platform for quantum microwave-to-optical transduction,” Quantum Sci. Technol. 5, 034004 (2020).
[Crossref]

Ji, X.

Jia, Y.

Jian, J.

M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, and X. Cai, “High-performance coherent optical modulators based on thin-film lithium niobate platform,” Nat. Commun. 11, 3911 (2020).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

J. Jian, M. Xu, L. Liu, Y. Luo, J. Zhang, L. Liu, L. Zhou, H. Chen, S. Yu, and X. Cai, “High modulation efficiency lithium niobate Michelson interferometer modulator,” Opt. Express 27, 18731–18739 (2019).
[Crossref]

J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26, 29651–29658 (2018).
[Crossref]

Y. Zhang, M. Xu, H. Zhang, M. Li, J. Jian, M. He, L. Chen, L. Wang, X. Cai, X. Xiao, and S. Yu, “220 Gbit/s optical PAM4 modulation based on lithium niobate on insulator modulator,” in 45th European Conference on Optical Communication (ECOC) (2019), pp. 1–4.

Jiang, H.

Jiang, L.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

Jiang, P.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Jiang, W.

F. M. Mayor, W. Jiang, C. J. Sarabalis, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Gigahertz phononic integrated circuits on thin-film lithium niobate on sapphire,” Phys. Rev. Appl. 15, 014039 (2021).
[Crossref]

C. J. Sarabalis, R. Van Laer, R. N. Patel, Y. D. Dahmani, W. Jiang, F. M. Mayor, and A. H. Safavi-Naeini, “Acousto-optic modulation of a wavelength-scale waveguide,” Optica 8, 477–483 (2021).
[Crossref]

Y. D. Dahmani, C. J. Sarabalis, W. Jiang, F. M. Mayor, and A. H. Safavi-Naeini, “Piezoelectric transduction of a wavelength-scale mechanical waveguide,” Phys. Rev. Appl. 13, 024069 (2020).
[Crossref]

T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. Alex Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” Optica 7, 1737–1745 (2020).
[Crossref]

W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nat. Commun. 11, 1166 (2020).
[Crossref]

W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” Optica 6, 845–853 (2019).
[Crossref]

M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012).
[Crossref]

Jiang, W. C.

Jiang, X.

D. Pak, H. An, A. Nandi, X. Jiang, Y. Xuan, and M. Hosseini, “Ytterbium-implanted photonic resonators based on thin film lithium niobate,” J. Appl. Phys. 128, 084302 (2020).
[Crossref]

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science 370, 1460–1463 (2020).
[Crossref]

Jiang, Y.

Jiang, Y.-P.

S.-M. Zhang, Y.-P. Jiang, and Y. Jiao, “Clean waveguides in lithium niobate thin film formed by He ion implantation,” Appl. Phys. B 123, 220 (2017).
[Crossref]

Jiang, Z.

C.-B. Huang, Z. Jiang, D. Leaird, J. Caraquitena, and A. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2, 227–248 (2008).
[Crossref]

Jiao, Y.

S.-M. Zhang, Y.-P. Jiang, and Y. Jiao, “Clean waveguides in lithium niobate thin film formed by He ion implantation,” Appl. Phys. B 123, 220 (2017).
[Crossref]

Jin, J.

X. Yin, J. Jin, M. Soljačić, C. Peng, and B. Zhen, “Observation of topologically enabled unidirectional guided resonances,” Nature 580, 467–471 (2020).
[Crossref]

Jin, M.

Jin, S.

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photon. Technol. Lett. 28, 736–739 (2016).
[Crossref]

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photon. Technol. Lett. 28, 736–739 (2015).
[Crossref]

Jin, T.

T. Jin, J. Zhou, and P. T. Lin, “Mid-infrared electro-optical modulation using monolithically integrated titanium dioxide on lithium niobate optical waveguides,” Sci. Rep. 9, 15130 (2019).
[Crossref]

Johnson, A. R.

Johnson, T. J.

R. V. Kochanov, I. E. Gordon, L. S. Rothman, K. P. Shine, S. W. Sharpe, T. J. Johnson, T. J. Wallington, J. J. Harrison, P. F. Bernath, M. Birk, G. Wagner, K. Le Bris, I. Bravo, and C. Hill, “REPRINT OF: Infrared absorption cross-sections in HITRAN2016 and beyond: expansion for climate, environment, and atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 238, 106708 (2019).
[Crossref]

Johnston, W. D.

W. D. Johnston, I. P. Kaminow, and J. G. Bergman, “Stimulated Raman gain coefficients for Li6NbO3, Ba2NaNb5O15, and other materials,” Appl. Phys. Lett. 13, 190–193 (1968).
[Crossref]

Joly, N.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[Crossref]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–640 (2000).
[Crossref]

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Jones, W. M.

E. A. Kittlaus, W. M. Jones, P. T. Rakich, N. T. Otterstrom, R. E. Muller, and M. Rais-Zadeh, “Electrically-driven acousto-optics and broadband non-reciprocity in silicon photonics,” Nat. Photonics 15, 43–52 (2021).
[Crossref]

Jöns, K. D.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref]

Joshi, C.

C. Joshi, A. Farsi, A. Dutt, B.-Y. Kim, X. Ji, Y. Zhao, A. M. Bishop, M. Lipson, and A. L. Gaeta, “Frequency-domain quantum interference with correlated photons from an integrated microresonator,” Phys. Rev. Lett. 124, 143601 (2020).
[Crossref]

C. Joshi, A. Farsi, C. Clemmen, S. Ramelow, and A. Gaeta, “Frequency multiplexing for quasi-deterministic heralded single-photon sources,” Nat. Commun. 9, 847 (2018).
[Crossref]

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120 (2015).
[Crossref]

Jun, D.

D. Jun, J. Wei, C. E. Png, S. Guangyuan, J. Son, H. Yang, and A. J. Danner, “Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas,” J. Vac. Sci. Technol. B 30, 011208 (2012).
[Crossref]

Jundt, D.

Juneghani, F. A.

Jung, H.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Juvert, J.

J. Zhang, G. Muliuk, J. Juvert, S. Kumari, J. Goyvaerts, B. Haq, C. Op de Beeck, B. Kuyken, G. Morthier, D. Van Thourhout, R. Baets, G. Lepage, P. Verheyen, J. Van Campenhout, A. Gocalinska, J. O’Callaghan, E. Pelucchi, K. Thomas, B. Corbett, A. J. Trindade, and G. Roelkens, “III-V-on-Si photonic integrated circuits realized using micro-transfer-printing,” APL Photon. 4, 110803 (2019).
[Crossref]

Kahn, J. M.

B. Buscaino, M. Zhang, M. Lončar, and J. M. Kahn, “Design of efficient resonator-enhanced electro-optic frequency comb generators,” J. Lightwave Technol. 38, 1400–1413 (2020).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

K. Ho and J. M. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” IEEE Photon. Technol. Lett. 5, 721–725 (1993).
[Crossref]

Kalaee, M.

M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Quantum transduction of optical photons from a superconducting qubit,” Nature 588, 599–603 (2020).
[Crossref]

Kalinin, S. V.

A. L. Kholkin, S. V. Kalinin, A. Roelofs, and A. Gruverman, “Review of ferroelectric domain imaging by piezoresponse force microscopy,” in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, S. Kalinin and A. Gruverman, eds. (Springer, 2007), pp. 173–214.

Kaminow, I. P.

W. D. Johnston, I. P. Kaminow, and J. G. Bergman, “Stimulated Raman gain coefficients for Li6NbO3, Ba2NaNb5O15, and other materials,” Appl. Phys. Lett. 13, 190–193 (1968).
[Crossref]

W. W. Rigrod and I. P. Kaminow, “Wide-band microwave light modulation,” Proc. IEEE 51, 137–140 (1963).
[Crossref]

Kamp, M.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Kaneda, F.

F. Kaneda and P. G. Kwiat, “High-efficiency single-photon generation via large-scale active time multiplexing,” Sci. Adv. 5, eaaw8586 (2019).
[Crossref]

Kang, Y.

Kanter, G. S.

Kar, A.

Karasahin, A.

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Lončar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113, 221102 (2018).
[Crossref]

Karim, A.

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 19, 312–314 (2007).
[Crossref]

Karpinski, M.

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref]

Karpov, M.

Kärtner, F. X.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 µm to beyond 2.4 µm,” Light Sci. Appl. 7, 17131 (2018).
[Crossref]

Kaufmann, F.

D. Pohl, M. Reig Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2020).
[Crossref]

Kawaguchi, Y.

Kawanishi, T.

Keller, U.

Khan, M.

Khan, M. S. I.

Khan, S.

S. Khan, S. M. Buckley, J. Chiles, R. P. Mirin, S. W. Nam, and J. M. Shainline, “Low-loss, high-bandwidth fiber-to-chip coupling using capped adiabatic tapered fibers,” APL Photon. 5, 056101 (2020).
[Crossref]

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
[Crossref]

Kharel, P.

K. Luke, P. Kharel, C. Reimer, L. He, M. Loncar, and M. Zhang, “Wafer-scale low-loss lithium niobate photonic integrated circuits,” Opt. Express 28, 24452–24458 (2020).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

P. Kharel, C. Reimer, K. Luke, L. He, and M. Zhang, “Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes,” arXiv:2011.13422 (2020).

Kholkin, A. L.

A. L. Kholkin, S. V. Kalinin, A. Roelofs, and A. Gruverman, “Review of ferroelectric domain imaging by piezoresponse force microscopy,” in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, S. Kalinin and A. Gruverman, eds. (Springer, 2007), pp. 173–214.

Khurgin, J. B.

K. Abdelsalam, T. Li, J. B. Khurgin, and S. Fathpour, “Linear isolators using wavelength conversion,” Optica 7, 209–213 (2020).
[Crossref]

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

Kiani, K. M.

Kibler, B.

Kim, B. Y.

Kim, B.-Y.

C. Joshi, A. Farsi, A. Dutt, B.-Y. Kim, X. Ji, Y. Zhao, A. M. Bishop, M. Lipson, and A. L. Gaeta, “Frequency-domain quantum interference with correlated photons from an integrated microresonator,” Phys. Rev. Lett. 124, 143601 (2020).
[Crossref]

Kim, C.-S.

A. E. Dane, A. N. McCaughan, D. Zhu, Q. Zhao, C.-S. Kim, N. Calandri, A. Agarwal, F. Bellei, and K. K. Berggren, “Bias sputtered NbN and superconducting nanowire devices,” Appl. Phys. Lett. 111, 122601 (2017).
[Crossref]

Kim, G.-D.

Kim, J.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

T.-J. Lu, M. Fanto, H. Choi, P. Thomas, J. Steidle, S. Mouradian, W. Kong, D. Zhu, H. Moon, K. Berggren, J. Kim, M. Soltani, S. Preble, and D. Englund, “Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum,” Opt. Express 26, 11147–11160 (2018).
[Crossref]

Kim, J.-H.

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Lončar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113, 221102 (2018).
[Crossref]

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17, 7394–7400 (2017).
[Crossref]

Kim, K.

J. Yoon and K. Kim, “Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process,” Appl. Phys. Lett. 68, 2523–2525 (1996).
[Crossref]

Kim, M.-H.

C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref]

Kim, S.

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photonics 12, 91–97 (2018).
[Crossref]

Kim, W.-J.

King, O.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An integrated low-voltage broadband lithium niobate phase modulator,” IEEE Photon. Technol. Lett. 31, 889–892 (2019).
[Crossref]

Kinsler, P.

Kip, D.

Kippenberg, T. J.

A. K. Tusnin, A. M. Tikan, and T. J. Kippenberg, “Nonlinear states and dynamics in a synthetic frequency dimension,” Phys. Rev. A 102, 023518 (2020).
[Crossref]

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13, 158–169 (2019).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
[Crossref]

L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42, 803–806 (2017).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Kirchhoff, J. F.

R. Gerson, J. F. Kirchhoff, L. E. Halliburton, and D. A. Bryan, “Photoconductivity parameters in lithium niobate,” J. Appl. Phys. 60, 3553–3557 (1986).
[Crossref]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “Review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Kitamura, K.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981–1983 (1998).
[Crossref]

Kittlaus, E. A.

E. A. Kittlaus, W. M. Jones, P. T. Rakich, N. T. Otterstrom, R. E. Muller, and M. Rais-Zadeh, “Electrically-driven acousto-optics and broadband non-reciprocity in silicon photonics,” Nat. Photonics 15, 43–52 (2021).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

Kjaergaard, M.

M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver, “Superconducting qubits: current state of play,” Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).
[Crossref]

Klenner, A.

Kley, E.-B.

R. Geiss, J. Brandt, H. Hartung, A. Tünnermann, T. Pertsch, E.-B. Kley, and F. Schrempel, “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching,” J. Vac. Sci. Technol. B 33, 010601 (2015).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

Knight, J. C.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

Knipp, P. A.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[Crossref]

Knoerzer, M.

Kobayashi, T.

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[Crossref]

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Kochanov, R. V.

R. V. Kochanov, I. E. Gordon, L. S. Rothman, K. P. Shine, S. W. Sharpe, T. J. Johnson, T. J. Wallington, J. J. Harrison, P. F. Bernath, M. Birk, G. Wagner, K. Le Bris, I. Bravo, and C. Hill, “REPRINT OF: Infrared absorption cross-sections in HITRAN2016 and beyond: expansion for climate, environment, and atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 238, 106708 (2019).
[Crossref]

Kondou, J.

K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys. Part 1 45, 8696–8698 (2006).
[Crossref]

Kong, R.

Z. Chen, Y. Wang, Y. Jiang, R. Kong, and H. Hu, “Grating coupler on single-crystal lithium niobate thin film,” Opt. Mater. 72, 136–139 (2017).
[Crossref]

L. Cai, R. Kong, Y. Wang, and H. Hu, “Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film,” Opt. Express 23, 29211–29221 (2015).
[Crossref]

Kong, W.

Kong, Y.

Q. Luo, Z. Hao, C. Yang, R. Zhang, D. Zheng, S. Liu, H. Liu, F. Bo, Y. Kong, G. Zhang, and J. Xu, “Microdisk lasers on an erbium-doped lithium-niobite chip,” Sci. China Phys. Mech. Astron. 64, 100504 (2021).
[Crossref]

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32, 1806452 (2020).
[Crossref]

G. Qian, L. Huang, F. Zhou, J. Tang, X. Chen, Y. Kong, and T. Chen, “Design and fabrication of cantilevered fiber-to-waveguide mode size converter for thin-film lithium niobate photonic integrated circuits,” Proc. SPIE 11455, 1145587 (2020).
[Crossref]

L. Zhang, D. Zheng, W. Li, F. Bo, F. Gao, Y. Kong, G. Zhang, and J. Xu, “Microdisk resonators with lithium-niobate film on silicon substrate,” Opt. Express 27, 33662–33669 (2019).
[Crossref]

Koolstra, G.

S. J. Whiteley, G. Wolfowicz, C. P. Anderson, A. Bourassa, H. Ma, M. Ye, G. Koolstra, K. J. Satzinger, M. V. Holt, F. J. Heremans, A. N. Cleland, D. I. Schuster, G. Galli, and D. D. Awschalom, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nat. Phys. 15, 490–495 (2019).
[Crossref]

Korneev, A.

E. Smirnov, A. Golikov, P. Zolotov, V. Kovalyuk, M. Lobino, B. Voronov, A. Korneev, and G. Goltsman, “Superconducting nanowire single-photon detector on lithium niobate,” J. Phys. Conf. Ser. 1124, 051025 (2018).
[Crossref]

Korotky, S. K.

S. K. Korotky and J. J. Veselka, “An RC network analysis of long term Ti:LiNbO3 bias stability,” J. Lightwave Technol. 14, 2687–2697 (1996).
[Crossref]

Korzh, B.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

Koshiba, M.

Kourogi, M.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[Crossref]

Kovalyuk, V.

E. Smirnov, A. Golikov, P. Zolotov, V. Kovalyuk, M. Lobino, B. Voronov, A. Korneev, and G. Goltsman, “Superconducting nanowire single-photon detector on lithium niobate,” J. Phys. Conf. Ser. 1124, 051025 (2018).
[Crossref]

Kowligy, A.

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Kozlov, V. V.

Krantz, P.

M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver, “Superconducting qubits: current state of play,” Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).
[Crossref]

Krapick, S.

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photon. 4, 056103 (2019).
[Crossref]

J. P. Höpker, M. Bartnick, E. Meyer-Scott, F. Thiele, T. Meier, T. Bartley, S. Krapick, N. M. Montaut, M. Santandrea, H. Herrmann, S. Lengeling, R. Ricken, V. Quiring, A. E. Lita, V. B. Verma, T. Gerrits, S. W. Nam, and C. Silberhorn, “Towards integrated superconducting detectors on lithium niobate waveguides,” Proc. SPIE 10358, 1035809 (2017).
[Crossref]

Krasnokutska, I.

Krolikowski, W.

Krückel, C. J.

Kues, M.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Kulakovskii, V. D.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[Crossref]

Kumar, A.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73, 2293–2295 (1998).
[Crossref]

Kumar, P.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

B. S. Elkus, K. Abdelsalam, A. Rao, V. Velev, S. Fathpour, P. Kumar, and G. S. Kanter, “Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides,” Opt. Express 27, 38521–38531 (2019).
[Crossref]

Kumar, R.

R. Kumar and J. Ghosh, “Joint spectral amplitude analysis of SPDC photon pairs in a multimode ppLN ridge waveguide,” arXiv:1906.10344 (2019).

Kumari, M.

A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
[Crossref]

Kumari, S.

J. Zhang, G. Muliuk, J. Juvert, S. Kumari, J. Goyvaerts, B. Haq, C. Op de Beeck, B. Kuyken, G. Morthier, D. Van Thourhout, R. Baets, G. Lepage, P. Verheyen, J. Van Campenhout, A. Gocalinska, J. O’Callaghan, E. Pelucchi, K. Thomas, B. Corbett, A. J. Trindade, and G. Roelkens, “III-V-on-Si photonic integrated circuits realized using micro-transfer-printing,” APL Photon. 4, 110803 (2019).
[Crossref]

Kuo, B. P.-P.

N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, and M. R. Watts, “Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 µm to beyond 2.4 µm,” Light Sci. Appl. 7, 17131 (2018).
[Crossref]

Kuyken, B.

J. Zhang, G. Muliuk, J. Juvert, S. Kumari, J. Goyvaerts, B. Haq, C. Op de Beeck, B. Kuyken, G. Morthier, D. Van Thourhout, R. Baets, G. Lepage, P. Verheyen, J. Van Campenhout, A. Gocalinska, J. O’Callaghan, E. Pelucchi, K. Thomas, B. Corbett, A. J. Trindade, and G. Roelkens, “III-V-on-Si photonic integrated circuits realized using micro-transfer-printing,” APL Photon. 4, 110803 (2019).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

Kuznetsov, D. K.

P. S. Zelenovskiy, V. Y. Shur, P. Bourson, M. D. Fontana, D. K. Kuznetsov, and E. A. Mingaliev, “Raman study of neutral and charged domain walls in lithium niobate,” Ferroelectrics 398, 34–41 (2010).
[Crossref]

Kwiat, P. G.

D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects for next-generation information technologies,” PRX Quantum 2, 017002 (2021).
[Crossref]

F. Kaneda and P. G. Kwiat, “High-efficiency single-photon generation via large-scale active time multiplexing,” Sci. Adv. 5, eaaw8586 (2019).
[Crossref]

Lacava, C.

Lacour, F.

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Lacroix, S.

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “Review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]