Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 73,
  • Issue 9,
  • pp. 1087-1098
  • (2019)

Mid-Infrared Spectroscopy and Multivariate Analysis to Characterize Lactobacillus acidophilus Fermentation Processes

Not Accessible

Your library or personal account may give you access

Abstract

The ever-growing competition among global biotech industries has led to high demands on production consistency. A statistical strategy of performance mapping for production optimization is therefore of great economic significance. Process analytical technology (PAT)-based sensors such as mid-infrared (MIR) spectroscopy enable process monitoring through substrate and by-product concentrations that directly represent the physiology of cells. Combined with multivariate statistics, MIR can be employed as a strategy for production performance mapping. This study describes the use of at-line spectroscopy, chemometric modeling, and post-process fitting to characterize Lactobacillus acidophilus fermentations. The emphasis is on alternative arrangements of the data and chemometric methods principle component analysis (PCA), multivariate curve resolution (MCR), and parallel factor analysis (PARAFAC). Two key parameters, rate constant and time of inflection, are extracted by post-process fitting on the outcomes of these different models. Their use as process performance descriptors to characterize the dynamics of substrate consumption, product formation and batch-to-batch variations is suggested. The unconstrained PCA primarily described biomass change, while the constrained models PARAFAC and MCR (both the augmented and individual-run configurations) could model the decrease in sugars and increase in lactic acid over time. It was concluded that MCR on individual batch data, followed by post-process fitting, is the preferred strategy for MIR spectroscopic monitoring.

© 2019 The Author(s)

PDF Article
More Like This
Evaluation of antibiotic effects on Pseudomonas aeruginosa biofilm using Raman spectroscopy and multivariate analysis

Gyeong Bok Jung, Seong Won Nam, Samjin Choi, Gi-Ja Lee, and Hun-Kuk Park
Biomed. Opt. Express 5(9) 3238-3251 (2014)

Extraction of information from laser-induced breakdown spectroscopy spectral data by multivariate analysis

Nicole Labbé, Isabel Maya Swamidoss, Nicolas André, Madhavi Z. Martin, Timothy M. Young, and Timothy G. Rials
Appl. Opt. 47(31) G158-G165 (2008)

Rapid detection of carbon-nitrogen ratio for anaerobic fermentation feedstocks using near-infrared spectroscopy combined with BiPLS and GSA

Jinming Liu, Nan Li, Feng Zhen, Yonghua Xu, Wenzhe Li, and Yong Sun
Appl. Opt. 58(18) 5090-5097 (2019)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental file.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.