Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Determination of Elemental Composition in Soft Biological Tissue Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry: Method Validation

Not Accessible

Your library or personal account may give you access

Abstract

Determination of elemental concentrations in biological tissue is fundamental to many environmental studies. Analytical methods typically used to quantify concentrations in such studies have minimum sample volumes that necessitate lethal or impactful collection of tissues. Laser ablation inductively coupled mass spectrometry (LA-ICP-MS) has small sample volume requirements and offers environmental practitioners an opportunity to employ low-impact sample collection methods. Environmental applications of LA-ICP-MS are limited by the lack of validated methods, partly due to the need for dry samples and scarcity of matrix-matched certified reference materials (CRMs). This study validates an LA-ICP-MS method to determine concentrations of 30 elements in soft biological tissue (fish ovary and muscle). Tissue samples (median: 0.48 grams (g); inter-quartile range: 0.30 g to 0.56 g wet weight) were dehydrated, powdered, compressed into pellets (weighing approximately 0.03 g) and analyzed using LA-ICP-MS alongside three matrix-matched CRMs. The method yielded concentration determinations for CRM elements that were typically accurate to within 30% of theoretical concentrations, and precise (relative standard deviation <20%). These results were repeatable: accuracy rarely deviated from theoretical values by more than 20%, and precision rarely exceeded 33%. Determinations for biological samples were replicable irrespective of tissue (ovary or muscle). There was good linearity between analyte signal strength and theoretical concentration (median R2 ≥ 0.981 for all elements) across ranges typically encountered in environmental studies. Concentrations could not be consistently obtained (i.e., determined concentrations were typically below detection limits) for boron, vanadium, molybdenum, and cadmium in muscles, and arsenic in both ovaries and muscles; however, detection limits were sufficiently low for most environmental contexts. Further methodological refinement could include the incorporation of spiked standards to extend linear ranges, and fine-tuning instrument parameters to obtain smoother signal intensities for rare elements. The method presented promotes the use of low-impact sample collection methods while enabling high-quality determinations of elemental concentrations in biological tissues.

© 2021 The Author(s)

PDF Article
More Like This
Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

Michaela Galiová, Jozef Kaiser, Francisco J. Fortes, Karel Novotný, Radomír Malina, Lubomír Prokeš, Aleš Hrdlička, Tomáš Vaculovič, Miriam Nývltová Fišáková, Jiří Svoboda, Viktor Kanický, and Javier J. Laserna
Appl. Opt. 49(13) C191-C199 (2010)

Rapid trace element analysis of microgram soft materials with cryogenic milling and laser ablation spectroscopy

Yuanchao Liu, Yi-Kong Hsieh, Conrad Wong, Irfan Ahmed, Rafay Ahmed, Muhammad Shehzad Khan, Richard Y. H. Cheung, Chu-Fang Wang, and Condon Lau
Appl. Opt. 59(26) 7752-7759 (2020)

Supplementary Material (1)

NameDescription
Supplement 1       sj-pdf-1-asp-10.1177_00037028211008535 - Supplemental material for Determination of Elemental Composition in Soft Biological Tissue Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry: Method Validation

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.