Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Current Optics and Photonics
  • Vol. 6,
  • Issue 2,
  • pp. 183-190
  • (2022)

An Optical Intense 2D Electric Field Sensor Using a Single LiNO3 Crystal

Open Access Open Access

Abstract

Based on the linear electro-optic (EO) effect of lithium niobite (LiNbO3, LN) crystal, an intense two-dimensional (2D) electric field sensor was analyzed, fabricated and experimentally demonstrated. The linear polarized light beam transmits along the optical axis (z-axis) of the LN crystal, and the polarization direction of the polarized light is 45° to the y-axis. The sensor can detect the intensity of a 2D electric field that is perpendicular to the z-axis. Experimental results demonstrated that the minimum detectable electric field of the sensor is 10.5 kV/m. The maximum detected electric field of the sensor is larger than 178.9 kV/m. The sensitivity of the sensor is 0.444 mV/(kV·m−1). The variation of the sensitivity is within ±0.16 dB when the sensor is rotated around a z-axis from 0° to 360°. The variation of the sensor output optical power is within ±1.4 dB during temperature change from 19 ℃ to 26 ℃ in a day (from 7:00 AM to 23:00 PM) and temperature change from 0 ℃ to 40 ℃ in a controllable temperature chamber. All theoretical and experimental results revealed that the fabricated sensor provides technology for the direct detection of intense 2D electric fields.

© 2022 Optical Society of Korea

PDF Article

References

  • View by:

  1. V. T. Kontargyri, L. N. Plati, I. F. Gonos, "Measurement and simulation of the voltage distribution and the electric field on a glass insulator string," Measurement 41, 471‒480 (2008)
    [Crossref]
  2. D. C. Faircloth, N. L. Allen, "High resolution measurements of surface charge densities on insulator surfaces," IEEE Trans. Deilectr. Electr. Insul. 10, 285‒290 (2003)
    [Crossref]
  3. F.-S. Luo, H.-C. Zhuang, Y.-H. He, J. Zhang, Z.-Y. Chen, S.-B. Hu, Z.-Z. Huang, W.-B.Guo, "Balloon-borne two spheres electric field instrument and application," Chin. J. Geophys. 42, 772‒777 (1999)
  4. D. Yeboah-Amankwah, P. Made, "Sign discriminating field mill," J. Atmos. Terr. Phys. 54, 851‒861 (1992)
    [Crossref]
  5. J. H. Zhang, L. Yang, Y. Li, "Non-invasive measurement of intensive power‐frequency electric field using a LiNbO3-integrated optical waveguide sensor," IET Sci. Meas. Technol. 15, 101‒108 (2021)
    [Crossref]
  6. M. Kanda, "Standard probes for electromagnetic field measurements," IEEE Trans. Antennas Propag. 41, 1349‒1364 (1993)
    [Crossref]
  7. B. Sun, F. Chen, K. Chen, Z. Hu, Y. Cao, "Integrated optical electric field sensor from 10 KHz to 18 GHz," IEEE Photonics Technol. Lett. 24, 1106‒1108 (2012)
    [Crossref]
  8. J. Zhang, F. Chen, B. Liu, "Integrated photonic electric field sensor operating more than 26 GHz," IEEE Microw. Wirel. Compon. Lett. 30, 1009‒1012 (2020)
    [Crossref]
  9. J. Zhang, D. Yang, C. Zhang, Z. Zhao, "A single chip LiNbO3 photonic 2D electric field sensor using two perpendicular electrodes," IEEE Photonics Technol. Lett. 32, 1501‒1504 (2020)
    [Crossref]
  10. W. K. Kuo, S. L. Huang, T. S. Horng, L. C. Chang, "Two-dimensional mapping of electric-field vector by electro-optic prober," Opt. Commun. 149, 55‒60 (1998)
    [Crossref]
  11. Q. Yang, S. Sun, R. Han, W. Sima, T. Liu, "Intense transient electric field sensor based on the electro-optic effect of LiNbO3," AIP Adv. 5, (2015)
    [Crossref]
  12. Q. Yang, R. Liu, Y. He, M. Luo, "AC/DC hybrid electric field measurement method based on Pockels effect and electric field modulation," Rev. Sci. Inst. 91, (2020)
    [Crossref] [PubMed]
  13. W.-K. Kuo, W.-H. Chen, Y.-T. Huang, S.-L. Huang, "Two-dimensional electric-field vector measurement by a LiTaO3 electro-optic probe tip," Appl. Opt. 39, 4985‒4993 (2000)
    [Crossref] [PubMed]
  14. J. Zhang, F. Chen, B. Sun, K. Chen, C. Li, "3D integrated optical E-field sensor for lightning electromagnetic impulse measurement," IEEE Photonics Technol. Lett. 26, 2353‒2356 (2014)
    [Crossref]
  15. T.-H. Lee, W.-T. Shay, C.-T. Lee, "Electromagnetic source azimuth measurement using electrooptical electromagnetic field probe'' IEEE Photonics Technol. Lett. 21 1163-1165 (2009).," IEEE Photonics Technol. Lett. 21, 1163‒1165 (2009)
    [Crossref]
  16. H.-C. Huang, "Fiber-optic analogs of bulk-optic wave plates'' Appl. Opt. 36 4241-4258 (1997).," Appl. Opt. 36, 4241‒4258 (1997)
    [Crossref] [PubMed]
  17. M. N. Zervas, R. Wilmshurst, L. M. B. Walker, "Twisted hi-bi fiber distributed-feedback lasers with controllable output state of polarization," Opt. Lett. 38, 1533‒1535 (2013)
    [Crossref] [PubMed]
  18. H. Hu, J. Huang, Y. Huang, L. Xia, J. Yu, "Modeling of the birefringence in spun fiber," Opt. Commun. 473, (2020)
    [Crossref]
  19. L. Duvillaret, S. Rialland, J.-L. Coutaz, "Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimization of their orientation," J. Opt. Soc. Am. B 19, 2704‒2715 (2002)
    [Crossref]
  20. A. Sihvola, J. Venermo, P. Ylä-Oijala, "Dielectric response of matter with cubic circular-cylindrical and spherical microstructure," Microw. Opt. Technol. Lett. 41, 245‒248 (2004)
    [Crossref]
  21. M. V. Hobden, J. Warner, "The temperature dependence of the refractive indices of pure lithium niobite," Phys. Lett. 22, 243‒244 (1966)
    [Crossref]
  22. W. Sima, T. Liu, Q. Yang, R. Han, S. Sun, "Temperature characteristics of Pockels electro-optic voltage sensor with double crystal compensation," AIP Adv. 6, (2016)
    [Crossref]
  23. M. Monerie, "Polarization-maintaining single-mode fiber cables: influence of joins," Appl. Opt. 20, 2400‒2406 (1981)
    [Crossref] [PubMed]

2021 (1)

J. H. Zhang, L. Yang, Y. Li, "Non-invasive measurement of intensive power‐frequency electric field using a LiNbO3-integrated optical waveguide sensor," IET Sci. Meas. Technol. 15, 101‒108 (2021)
[Crossref]

2020 (4)

J. Zhang, F. Chen, B. Liu, "Integrated photonic electric field sensor operating more than 26 GHz," IEEE Microw. Wirel. Compon. Lett. 30, 1009‒1012 (2020)
[Crossref]

J. Zhang, D. Yang, C. Zhang, Z. Zhao, "A single chip LiNbO3 photonic 2D electric field sensor using two perpendicular electrodes," IEEE Photonics Technol. Lett. 32, 1501‒1504 (2020)
[Crossref]

Q. Yang, R. Liu, Y. He, M. Luo, "AC/DC hybrid electric field measurement method based on Pockels effect and electric field modulation," Rev. Sci. Inst. 91, (2020)
[Crossref] [PubMed]

H. Hu, J. Huang, Y. Huang, L. Xia, J. Yu, "Modeling of the birefringence in spun fiber," Opt. Commun. 473, (2020)
[Crossref]

2016 (1)

W. Sima, T. Liu, Q. Yang, R. Han, S. Sun, "Temperature characteristics of Pockels electro-optic voltage sensor with double crystal compensation," AIP Adv. 6, (2016)
[Crossref]

2015 (1)

Q. Yang, S. Sun, R. Han, W. Sima, T. Liu, "Intense transient electric field sensor based on the electro-optic effect of LiNbO3," AIP Adv. 5, (2015)
[Crossref]

2014 (1)

J. Zhang, F. Chen, B. Sun, K. Chen, C. Li, "3D integrated optical E-field sensor for lightning electromagnetic impulse measurement," IEEE Photonics Technol. Lett. 26, 2353‒2356 (2014)
[Crossref]

2013 (1)

2012 (1)

B. Sun, F. Chen, K. Chen, Z. Hu, Y. Cao, "Integrated optical electric field sensor from 10 KHz to 18 GHz," IEEE Photonics Technol. Lett. 24, 1106‒1108 (2012)
[Crossref]

2009 (1)

T.-H. Lee, W.-T. Shay, C.-T. Lee, "Electromagnetic source azimuth measurement using electrooptical electromagnetic field probe'' IEEE Photonics Technol. Lett. 21 1163-1165 (2009).," IEEE Photonics Technol. Lett. 21, 1163‒1165 (2009)
[Crossref]

2008 (1)

V. T. Kontargyri, L. N. Plati, I. F. Gonos, "Measurement and simulation of the voltage distribution and the electric field on a glass insulator string," Measurement 41, 471‒480 (2008)
[Crossref]

2004 (1)

A. Sihvola, J. Venermo, P. Ylä-Oijala, "Dielectric response of matter with cubic circular-cylindrical and spherical microstructure," Microw. Opt. Technol. Lett. 41, 245‒248 (2004)
[Crossref]

2003 (1)

D. C. Faircloth, N. L. Allen, "High resolution measurements of surface charge densities on insulator surfaces," IEEE Trans. Deilectr. Electr. Insul. 10, 285‒290 (2003)
[Crossref]

2002 (1)

2000 (1)

1999 (1)

F.-S. Luo, H.-C. Zhuang, Y.-H. He, J. Zhang, Z.-Y. Chen, S.-B. Hu, Z.-Z. Huang, W.-B.Guo, "Balloon-borne two spheres electric field instrument and application," Chin. J. Geophys. 42, 772‒777 (1999)

1998 (1)

W. K. Kuo, S. L. Huang, T. S. Horng, L. C. Chang, "Two-dimensional mapping of electric-field vector by electro-optic prober," Opt. Commun. 149, 55‒60 (1998)
[Crossref]

1997 (1)

1993 (1)

M. Kanda, "Standard probes for electromagnetic field measurements," IEEE Trans. Antennas Propag. 41, 1349‒1364 (1993)
[Crossref]

1992 (1)

D. Yeboah-Amankwah, P. Made, "Sign discriminating field mill," J. Atmos. Terr. Phys. 54, 851‒861 (1992)
[Crossref]

1981 (1)

1966 (1)

M. V. Hobden, J. Warner, "The temperature dependence of the refractive indices of pure lithium niobite," Phys. Lett. 22, 243‒244 (1966)
[Crossref]

Allen, N. L.

D. C. Faircloth, N. L. Allen, "High resolution measurements of surface charge densities on insulator surfaces," IEEE Trans. Deilectr. Electr. Insul. 10, 285‒290 (2003)
[Crossref]

Cao, Y.

B. Sun, F. Chen, K. Chen, Z. Hu, Y. Cao, "Integrated optical electric field sensor from 10 KHz to 18 GHz," IEEE Photonics Technol. Lett. 24, 1106‒1108 (2012)
[Crossref]

Chang, L. C.

W. K. Kuo, S. L. Huang, T. S. Horng, L. C. Chang, "Two-dimensional mapping of electric-field vector by electro-optic prober," Opt. Commun. 149, 55‒60 (1998)
[Crossref]

Chen, F.

J. Zhang, F. Chen, B. Liu, "Integrated photonic electric field sensor operating more than 26 GHz," IEEE Microw. Wirel. Compon. Lett. 30, 1009‒1012 (2020)
[Crossref]

J. Zhang, F. Chen, B. Sun, K. Chen, C. Li, "3D integrated optical E-field sensor for lightning electromagnetic impulse measurement," IEEE Photonics Technol. Lett. 26, 2353‒2356 (2014)
[Crossref]

B. Sun, F. Chen, K. Chen, Z. Hu, Y. Cao, "Integrated optical electric field sensor from 10 KHz to 18 GHz," IEEE Photonics Technol. Lett. 24, 1106‒1108 (2012)
[Crossref]

Chen, K.

J. Zhang, F. Chen, B. Sun, K. Chen, C. Li, "3D integrated optical E-field sensor for lightning electromagnetic impulse measurement," IEEE Photonics Technol. Lett. 26, 2353‒2356 (2014)
[Crossref]

B. Sun, F. Chen, K. Chen, Z. Hu, Y. Cao, "Integrated optical electric field sensor from 10 KHz to 18 GHz," IEEE Photonics Technol. Lett. 24, 1106‒1108 (2012)
[Crossref]

Chen, W.-H.

Chen, Z.-Y.

F.-S. Luo, H.-C. Zhuang, Y.-H. He, J. Zhang, Z.-Y. Chen, S.-B. Hu, Z.-Z. Huang, W.-B.Guo, "Balloon-borne two spheres electric field instrument and application," Chin. J. Geophys. 42, 772‒777 (1999)

Coutaz, J.-L.

Duvillaret, L.

Faircloth, D. C.

D. C. Faircloth, N. L. Allen, "High resolution measurements of surface charge densities on insulator surfaces," IEEE Trans. Deilectr. Electr. Insul. 10, 285‒290 (2003)
[Crossref]

Gonos, I. F.

V. T. Kontargyri, L. N. Plati, I. F. Gonos, "Measurement and simulation of the voltage distribution and the electric field on a glass insulator string," Measurement 41, 471‒480 (2008)
[Crossref]

Han, R.

W. Sima, T. Liu, Q. Yang, R. Han, S. Sun, "Temperature characteristics of Pockels electro-optic voltage sensor with double crystal compensation," AIP Adv. 6, (2016)
[Crossref]

Q. Yang, S. Sun, R. Han, W. Sima, T. Liu, "Intense transient electric field sensor based on the electro-optic effect of LiNbO3," AIP Adv. 5, (2015)
[Crossref]

He, Y.

Q. Yang, R. Liu, Y. He, M. Luo, "AC/DC hybrid electric field measurement method based on Pockels effect and electric field modulation," Rev. Sci. Inst. 91, (2020)
[Crossref] [PubMed]

He, Y.-H.

F.-S. Luo, H.-C. Zhuang, Y.-H. He, J. Zhang, Z.-Y. Chen, S.-B. Hu, Z.-Z. Huang, W.-B.Guo, "Balloon-borne two spheres electric field instrument and application," Chin. J. Geophys. 42, 772‒777 (1999)

Hobden, M. V.

M. V. Hobden, J. Warner, "The temperature dependence of the refractive indices of pure lithium niobite," Phys. Lett. 22, 243‒244 (1966)
[Crossref]

Horng, T. S.

W. K. Kuo, S. L. Huang, T. S. Horng, L. C. Chang, "Two-dimensional mapping of electric-field vector by electro-optic prober," Opt. Commun. 149, 55‒60 (1998)
[Crossref]

Hu, H.

H. Hu, J. Huang, Y. Huang, L. Xia, J. Yu, "Modeling of the birefringence in spun fiber," Opt. Commun. 473, (2020)
[Crossref]

Hu, S.-B.

F.-S. Luo, H.-C. Zhuang, Y.-H. He, J. Zhang, Z.-Y. Chen, S.-B. Hu, Z.-Z. Huang, W.-B.Guo, "Balloon-borne two spheres electric field instrument and application," Chin. J. Geophys. 42, 772‒777 (1999)

Hu, Z.

B. Sun, F. Chen, K. Chen, Z. Hu, Y. Cao, "Integrated optical electric field sensor from 10 KHz to 18 GHz," IEEE Photonics Technol. Lett. 24, 1106‒1108 (2012)
[Crossref]

Huang, H.-C.

Huang, J.

H. Hu, J. Huang, Y. Huang, L. Xia, J. Yu, "Modeling of the birefringence in spun fiber," Opt. Commun. 473, (2020)
[Crossref]

Huang, S. L.

W. K. Kuo, S. L. Huang, T. S. Horng, L. C. Chang, "Two-dimensional mapping of electric-field vector by electro-optic prober," Opt. Commun. 149, 55‒60 (1998)
[Crossref]

Huang, S.-L.

Huang, Y.

H. Hu, J. Huang, Y. Huang, L. Xia, J. Yu, "Modeling of the birefringence in spun fiber," Opt. Commun. 473, (2020)
[Crossref]

Huang, Y.-T.

Huang, Z.-Z.

F.-S. Luo, H.-C. Zhuang, Y.-H. He, J. Zhang, Z.-Y. Chen, S.-B. Hu, Z.-Z. Huang, W.-B.Guo, "Balloon-borne two spheres electric field instrument and application," Chin. J. Geophys. 42, 772‒777 (1999)

Kanda, M.

M. Kanda, "Standard probes for electromagnetic field measurements," IEEE Trans. Antennas Propag. 41, 1349‒1364 (1993)
[Crossref]

Kontargyri, V. T.

V. T. Kontargyri, L. N. Plati, I. F. Gonos, "Measurement and simulation of the voltage distribution and the electric field on a glass insulator string," Measurement 41, 471‒480 (2008)
[Crossref]

Kuo, W. K.

W. K. Kuo, S. L. Huang, T. S. Horng, L. C. Chang, "Two-dimensional mapping of electric-field vector by electro-optic prober," Opt. Commun. 149, 55‒60 (1998)
[Crossref]

Kuo, W.-K.

Lee, C.-T.

T.-H. Lee, W.-T. Shay, C.-T. Lee, "Electromagnetic source azimuth measurement using electrooptical electromagnetic field probe'' IEEE Photonics Technol. Lett. 21 1163-1165 (2009).," IEEE Photonics Technol. Lett. 21, 1163‒1165 (2009)
[Crossref]

Lee, T.-H.

T.-H. Lee, W.-T. Shay, C.-T. Lee, "Electromagnetic source azimuth measurement using electrooptical electromagnetic field probe'' IEEE Photonics Technol. Lett. 21 1163-1165 (2009).," IEEE Photonics Technol. Lett. 21, 1163‒1165 (2009)
[Crossref]

Li, C.

J. Zhang, F. Chen, B. Sun, K. Chen, C. Li, "3D integrated optical E-field sensor for lightning electromagnetic impulse measurement," IEEE Photonics Technol. Lett. 26, 2353‒2356 (2014)
[Crossref]

Li, Y.

J. H. Zhang, L. Yang, Y. Li, "Non-invasive measurement of intensive power‐frequency electric field using a LiNbO3-integrated optical waveguide sensor," IET Sci. Meas. Technol. 15, 101‒108 (2021)
[Crossref]

Liu, B.

J. Zhang, F. Chen, B. Liu, "Integrated photonic electric field sensor operating more than 26 GHz," IEEE Microw. Wirel. Compon. Lett. 30, 1009‒1012 (2020)
[Crossref]

Liu, R.

Q. Yang, R. Liu, Y. He, M. Luo, "AC/DC hybrid electric field measurement method based on Pockels effect and electric field modulation," Rev. Sci. Inst. 91, (2020)
[Crossref] [PubMed]

Liu, T.

W. Sima, T. Liu, Q. Yang, R. Han, S. Sun, "Temperature characteristics of Pockels electro-optic voltage sensor with double crystal compensation," AIP Adv. 6, (2016)
[Crossref]

Q. Yang, S. Sun, R. Han, W. Sima, T. Liu, "Intense transient electric field sensor based on the electro-optic effect of LiNbO3," AIP Adv. 5, (2015)
[Crossref]

Luo, F.-S.

F.-S. Luo, H.-C. Zhuang, Y.-H. He, J. Zhang, Z.-Y. Chen, S.-B. Hu, Z.-Z. Huang, W.-B.Guo, "Balloon-borne two spheres electric field instrument and application," Chin. J. Geophys. 42, 772‒777 (1999)

Luo, M.

Q. Yang, R. Liu, Y. He, M. Luo, "AC/DC hybrid electric field measurement method based on Pockels effect and electric field modulation," Rev. Sci. Inst. 91, (2020)
[Crossref] [PubMed]

Made, P.

D. Yeboah-Amankwah, P. Made, "Sign discriminating field mill," J. Atmos. Terr. Phys. 54, 851‒861 (1992)
[Crossref]

Monerie, M.

Plati, L. N.

V. T. Kontargyri, L. N. Plati, I. F. Gonos, "Measurement and simulation of the voltage distribution and the electric field on a glass insulator string," Measurement 41, 471‒480 (2008)
[Crossref]

Rialland, S.

Shay, W.-T.

T.-H. Lee, W.-T. Shay, C.-T. Lee, "Electromagnetic source azimuth measurement using electrooptical electromagnetic field probe'' IEEE Photonics Technol. Lett. 21 1163-1165 (2009).," IEEE Photonics Technol. Lett. 21, 1163‒1165 (2009)
[Crossref]

Sihvola, A.

A. Sihvola, J. Venermo, P. Ylä-Oijala, "Dielectric response of matter with cubic circular-cylindrical and spherical microstructure," Microw. Opt. Technol. Lett. 41, 245‒248 (2004)
[Crossref]

Sima, W.

W. Sima, T. Liu, Q. Yang, R. Han, S. Sun, "Temperature characteristics of Pockels electro-optic voltage sensor with double crystal compensation," AIP Adv. 6, (2016)
[Crossref]

Q. Yang, S. Sun, R. Han, W. Sima, T. Liu, "Intense transient electric field sensor based on the electro-optic effect of LiNbO3," AIP Adv. 5, (2015)
[Crossref]

Sun, B.

J. Zhang, F. Chen, B. Sun, K. Chen, C. Li, "3D integrated optical E-field sensor for lightning electromagnetic impulse measurement," IEEE Photonics Technol. Lett. 26, 2353‒2356 (2014)
[Crossref]

B. Sun, F. Chen, K. Chen, Z. Hu, Y. Cao, "Integrated optical electric field sensor from 10 KHz to 18 GHz," IEEE Photonics Technol. Lett. 24, 1106‒1108 (2012)
[Crossref]

Sun, S.

W. Sima, T. Liu, Q. Yang, R. Han, S. Sun, "Temperature characteristics of Pockels electro-optic voltage sensor with double crystal compensation," AIP Adv. 6, (2016)
[Crossref]

Q. Yang, S. Sun, R. Han, W. Sima, T. Liu, "Intense transient electric field sensor based on the electro-optic effect of LiNbO3," AIP Adv. 5, (2015)
[Crossref]

Venermo, J.

A. Sihvola, J. Venermo, P. Ylä-Oijala, "Dielectric response of matter with cubic circular-cylindrical and spherical microstructure," Microw. Opt. Technol. Lett. 41, 245‒248 (2004)
[Crossref]

W.-B.Guo,

F.-S. Luo, H.-C. Zhuang, Y.-H. He, J. Zhang, Z.-Y. Chen, S.-B. Hu, Z.-Z. Huang, W.-B.Guo, "Balloon-borne two spheres electric field instrument and application," Chin. J. Geophys. 42, 772‒777 (1999)

Walker, L. M. B.

Warner, J.

M. V. Hobden, J. Warner, "The temperature dependence of the refractive indices of pure lithium niobite," Phys. Lett. 22, 243‒244 (1966)
[Crossref]

Wilmshurst, R.

Xia, L.

H. Hu, J. Huang, Y. Huang, L. Xia, J. Yu, "Modeling of the birefringence in spun fiber," Opt. Commun. 473, (2020)
[Crossref]

Yang, D.

J. Zhang, D. Yang, C. Zhang, Z. Zhao, "A single chip LiNbO3 photonic 2D electric field sensor using two perpendicular electrodes," IEEE Photonics Technol. Lett. 32, 1501‒1504 (2020)
[Crossref]

Yang, L.

J. H. Zhang, L. Yang, Y. Li, "Non-invasive measurement of intensive power‐frequency electric field using a LiNbO3-integrated optical waveguide sensor," IET Sci. Meas. Technol. 15, 101‒108 (2021)
[Crossref]

Yang, Q.

Q. Yang, R. Liu, Y. He, M. Luo, "AC/DC hybrid electric field measurement method based on Pockels effect and electric field modulation," Rev. Sci. Inst. 91, (2020)
[Crossref] [PubMed]

W. Sima, T. Liu, Q. Yang, R. Han, S. Sun, "Temperature characteristics of Pockels electro-optic voltage sensor with double crystal compensation," AIP Adv. 6, (2016)
[Crossref]

Q. Yang, S. Sun, R. Han, W. Sima, T. Liu, "Intense transient electric field sensor based on the electro-optic effect of LiNbO3," AIP Adv. 5, (2015)
[Crossref]

Yeboah-Amankwah, D.

D. Yeboah-Amankwah, P. Made, "Sign discriminating field mill," J. Atmos. Terr. Phys. 54, 851‒861 (1992)
[Crossref]

Ylä-Oijala, P.

A. Sihvola, J. Venermo, P. Ylä-Oijala, "Dielectric response of matter with cubic circular-cylindrical and spherical microstructure," Microw. Opt. Technol. Lett. 41, 245‒248 (2004)
[Crossref]

Yu, J.

H. Hu, J. Huang, Y. Huang, L. Xia, J. Yu, "Modeling of the birefringence in spun fiber," Opt. Commun. 473, (2020)
[Crossref]

Zervas, M. N.

Zhang, C.

J. Zhang, D. Yang, C. Zhang, Z. Zhao, "A single chip LiNbO3 photonic 2D electric field sensor using two perpendicular electrodes," IEEE Photonics Technol. Lett. 32, 1501‒1504 (2020)
[Crossref]

Zhang, J.

J. Zhang, D. Yang, C. Zhang, Z. Zhao, "A single chip LiNbO3 photonic 2D electric field sensor using two perpendicular electrodes," IEEE Photonics Technol. Lett. 32, 1501‒1504 (2020)
[Crossref]

J. Zhang, F. Chen, B. Liu, "Integrated photonic electric field sensor operating more than 26 GHz," IEEE Microw. Wirel. Compon. Lett. 30, 1009‒1012 (2020)
[Crossref]

J. Zhang, F. Chen, B. Sun, K. Chen, C. Li, "3D integrated optical E-field sensor for lightning electromagnetic impulse measurement," IEEE Photonics Technol. Lett. 26, 2353‒2356 (2014)
[Crossref]

F.-S. Luo, H.-C. Zhuang, Y.-H. He, J. Zhang, Z.-Y. Chen, S.-B. Hu, Z.-Z. Huang, W.-B.Guo, "Balloon-borne two spheres electric field instrument and application," Chin. J. Geophys. 42, 772‒777 (1999)

Zhang, J. H.

J. H. Zhang, L. Yang, Y. Li, "Non-invasive measurement of intensive power‐frequency electric field using a LiNbO3-integrated optical waveguide sensor," IET Sci. Meas. Technol. 15, 101‒108 (2021)
[Crossref]

Zhao, Z.

J. Zhang, D. Yang, C. Zhang, Z. Zhao, "A single chip LiNbO3 photonic 2D electric field sensor using two perpendicular electrodes," IEEE Photonics Technol. Lett. 32, 1501‒1504 (2020)
[Crossref]

Zhuang, H.-C.

F.-S. Luo, H.-C. Zhuang, Y.-H. He, J. Zhang, Z.-Y. Chen, S.-B. Hu, Z.-Z. Huang, W.-B.Guo, "Balloon-borne two spheres electric field instrument and application," Chin. J. Geophys. 42, 772‒777 (1999)

AIP Adv. (2)

Q. Yang, S. Sun, R. Han, W. Sima, T. Liu, "Intense transient electric field sensor based on the electro-optic effect of LiNbO3," AIP Adv. 5, (2015)
[Crossref]

W. Sima, T. Liu, Q. Yang, R. Han, S. Sun, "Temperature characteristics of Pockels electro-optic voltage sensor with double crystal compensation," AIP Adv. 6, (2016)
[Crossref]

Appl. Opt. (3)

Chin. J. Geophys. (1)

F.-S. Luo, H.-C. Zhuang, Y.-H. He, J. Zhang, Z.-Y. Chen, S.-B. Hu, Z.-Z. Huang, W.-B.Guo, "Balloon-borne two spheres electric field instrument and application," Chin. J. Geophys. 42, 772‒777 (1999)

IEEE Microw. Wirel. Compon. Lett. (1)

J. Zhang, F. Chen, B. Liu, "Integrated photonic electric field sensor operating more than 26 GHz," IEEE Microw. Wirel. Compon. Lett. 30, 1009‒1012 (2020)
[Crossref]

IEEE Photonics Technol. Lett. (4)

J. Zhang, D. Yang, C. Zhang, Z. Zhao, "A single chip LiNbO3 photonic 2D electric field sensor using two perpendicular electrodes," IEEE Photonics Technol. Lett. 32, 1501‒1504 (2020)
[Crossref]

B. Sun, F. Chen, K. Chen, Z. Hu, Y. Cao, "Integrated optical electric field sensor from 10 KHz to 18 GHz," IEEE Photonics Technol. Lett. 24, 1106‒1108 (2012)
[Crossref]

J. Zhang, F. Chen, B. Sun, K. Chen, C. Li, "3D integrated optical E-field sensor for lightning electromagnetic impulse measurement," IEEE Photonics Technol. Lett. 26, 2353‒2356 (2014)
[Crossref]

T.-H. Lee, W.-T. Shay, C.-T. Lee, "Electromagnetic source azimuth measurement using electrooptical electromagnetic field probe'' IEEE Photonics Technol. Lett. 21 1163-1165 (2009).," IEEE Photonics Technol. Lett. 21, 1163‒1165 (2009)
[Crossref]

IEEE Trans. Antennas Propag. (1)

M. Kanda, "Standard probes for electromagnetic field measurements," IEEE Trans. Antennas Propag. 41, 1349‒1364 (1993)
[Crossref]

IEEE Trans. Deilectr. Electr. Insul. (1)

D. C. Faircloth, N. L. Allen, "High resolution measurements of surface charge densities on insulator surfaces," IEEE Trans. Deilectr. Electr. Insul. 10, 285‒290 (2003)
[Crossref]

IET Sci. Meas. Technol. (1)

J. H. Zhang, L. Yang, Y. Li, "Non-invasive measurement of intensive power‐frequency electric field using a LiNbO3-integrated optical waveguide sensor," IET Sci. Meas. Technol. 15, 101‒108 (2021)
[Crossref]

J. Atmos. Terr. Phys. (1)

D. Yeboah-Amankwah, P. Made, "Sign discriminating field mill," J. Atmos. Terr. Phys. 54, 851‒861 (1992)
[Crossref]

J. Opt. Soc. Am. B (1)

Measurement (1)

V. T. Kontargyri, L. N. Plati, I. F. Gonos, "Measurement and simulation of the voltage distribution and the electric field on a glass insulator string," Measurement 41, 471‒480 (2008)
[Crossref]

Microw. Opt. Technol. Lett. (1)

A. Sihvola, J. Venermo, P. Ylä-Oijala, "Dielectric response of matter with cubic circular-cylindrical and spherical microstructure," Microw. Opt. Technol. Lett. 41, 245‒248 (2004)
[Crossref]

Opt. Commun. (2)

W. K. Kuo, S. L. Huang, T. S. Horng, L. C. Chang, "Two-dimensional mapping of electric-field vector by electro-optic prober," Opt. Commun. 149, 55‒60 (1998)
[Crossref]

H. Hu, J. Huang, Y. Huang, L. Xia, J. Yu, "Modeling of the birefringence in spun fiber," Opt. Commun. 473, (2020)
[Crossref]

Opt. Lett. (1)

Phys. Lett. (1)

M. V. Hobden, J. Warner, "The temperature dependence of the refractive indices of pure lithium niobite," Phys. Lett. 22, 243‒244 (1966)
[Crossref]

Rev. Sci. Inst. (1)

Q. Yang, R. Liu, Y. He, M. Luo, "AC/DC hybrid electric field measurement method based on Pockels effect and electric field modulation," Rev. Sci. Inst. 91, (2020)
[Crossref] [PubMed]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved