Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 28,
  • Issue 1,
  • pp. 79-90
  • (2010)

Filter Design for SOA-Assisted SS-WDM Systems Using Parallel Multicanonical Monte Carlo

Not Accessible

Your library or personal account may give you access

Abstract

We address design and optimization of optical filters for spectrum-sliced wavelength division multiplexed (SS-WDM) systems employing saturated semiconductor optical amplifiers (SOAs) to suppress intensity noise. We study the impact of the shape of both slicing and channel selecting optical filters vis-à-vis two important impairments: the filtering effect and the crosstalk. The quantification of bit error rate (BER) is made possible by a parallel implementation of the multicanonical Monte Carlo algorithm. The intensity noise suppression by the SOA and signal degradation by subsequent optical filtering are studied both numerically and experimentally. We find optical filter shape and bandwidth that minimizes BER.By varying channel spacing and width, we estimate the achievable spectral efficiency when using both noise-cleaning SOA and forward error correction. We show that when constrained to use a symmetric architecture, i.e., identical filters for both slicing and channel selecting filters, there is a degradation in achievable spectral efficiency. We show that noise suppression is robust to variations in relative channel powers in multichannel systems. Our numerical simulations, vetted experimentally, provide accurate and quantitative results on optimized system performance.

© 2009 IEEE

PDF Article
More Like This
Use of multicanonical Monte Carlo simulations to obtain accurate bit error rates in optical communications systems

Ronald Holzlööhner and Curtis R. Menyuk
Opt. Lett. 28(20) 1894-1896 (2003)

Multicanonical Monte-Carlo simulations of light propagation in biological media

A. Bilenca, A. Desjardins, B. E. Bouma, and G. J. Tearney
Opt. Express 13(24) 9822-9833 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.