Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 29,
  • Issue 13,
  • pp. 1907-1912
  • (2011)

Laser Scribing of Sapphire Substrate to Increase Side Light Extraction of GaN-Based Light Emitting Diodes

Not Accessible

Your library or personal account may give you access

Abstract

Generally, the laser scribing was done after GaN-based light emitting diodes (LEDs) growth. This study verified that the utilization of laser scribing leads to an increase in the surface roughness of sapphire substrate sidewalls, which reduces the probability of total internal reflection from light striking the sapphire/air interface. Laser scribing also helps increase side light extraction intensity and output power of GaN-based light emitting diodes. Study results indicated that lasers create a laser scribing layer (LSL) at a depth of approximately 30 µm after GaN-based LEDs grown in the sapphire substrate undergo laser scribing. Scanning electron microscopy was used to observe the rough surface of the LSL, while near-field optical images verified that rough surface LSL contributes to an increase in side wall light extraction intensity of LEDs. Furthermore, changing the depth of focus of the laser beam (from 0 µm to 36 µm) allows the formation of a large quantity of 3 to 5 µm holes on the LSL. Measurement results indicated that these holes caused the LSL surface to be even rougher, which further strengthened LED side wall light extraction intensity. The results after packaging show that LSL with holes increase output power at 20 mA of GaN-based LEDs by approximately 12.2 %.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved