Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 29,
  • Issue 21,
  • pp. 3167-3177
  • (2011)

Influence of Transmission Impairments on the OSMOSIS HPC Optical Interconnect Architecture

Not Accessible

Your library or personal account may give you access

Abstract

We examine the impact of transmission impairments on the performance of the optical supercomputer interconnect architecture, initially proposed in the context of the optical shared memory supercomputer interconnect system (OSMOSIS) project. We study two versions of the aforementioned optical interconnect that differ in terms of the number of semiconductor optical amplifiers (SOAs) used as ON–OFF gates. For practical reasons related to packet arbitration, the size of the crossbar switch of the optical interconnect in this study is limited to 64 ports. The switch is based on a broadcast-and-select architecture and employs DWDM in conjunction with 10 Gb/s intensity modulation/direct detection per wavelength channel. We show, both by experiment and by simulation, that the minimization of the number of SOAs in the optical switch by taking advantage of the cyclic routing capability of optical arrayed waveguide multiplexers/demultiplexers leads to negligible performance deterioration compared to conventional wavelength-space switches that are prohibitive slower and do not use any inherent gain properties like in OSMOSIS.

© 2011 Crown

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved