Abstract

We present a novel lotus-shaped negative curvature antiresonant hollow core fiber with the potential for low loss and very wide bandwidth. A minimum loss of ∼10 dB/km at 1550 nm and less than 100 dB/km over a bandwidth of ∼650 nm is demonstrated, with effectively single mode behavior over lengths of a few tens of meters. We demonstrate power penalty free 10.5-Gb/s data transmission through an 86 m length of fiber at both O and C telecom bands. The fiber macrobend sensitivity has also been tested, which is relevant for telecom as well as for other applications including beam delivery and gas-based sensing. The bend loss is found to be below 0.2 dB/m for bend radii down to 8 cm at wavelengths away from the short wavelength edge of the transmission band.

© 2017 CCBY

PDF Article

References

  • View by:

  1. F. Polettiet al., “Towards high-capacity fiber-optic communications at the speed of light in vacuum,” Nature Photon., vol. 7, no. 4. pp. 279–284, 2013.
  2. Y. Chenet al., “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightw. Technol., vol. 34, no. 1, pp. 104–113,  2016.
  3. F. Benabid and P. S. J. Russell, “Hollow core photonic crystal fibers: A new regime for nonlinear optics and laser-induced guidance,” in Proc. 6th Int. Conf. Transp. Opt. Netw., 2004, vol. 2, pp. 84–90.
  4. C. Saraceno, F. Emaury, A. Diebold, I. Graumann, M. Golling, and U. Keller, “Trends in high-power ultrafast lasers,” Proc. SPIE, vol. 9835, 2016, Art. no. .
  5. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission hypocloid-core Kagome hollow core photonic crystal fiber,” Opt. Lett., vol. 36, no. 5, pp. 669–671, 2011.
  6. N. V. Wheeleret al., “Low loss Kagome fiber in the 1 um wavelength region,” in Proc. Specialty Opt. Fibers Meeting Adv. Photon. Congr., 2016, Paper SoM3F.2.
  7. N. V. Wheeleret al., “Low loss Kagome hollow core fibers operating from the near- to the mid-IR,” Opt. Lett., vol. 42, no. 13, pp. 2571–2574, 2017.
  8. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5 μm,” Opt. Express, vol. 19, no. 2, pp. 1441–1448, 2011.
  9. J. R. Hayeset al., “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightw. Technol., vol. 35, no. 3, pp. 437–442,  2017.
  10. F. Yu and J. C. Knight, “Negative curvature hollow core optical fiber,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 2,  2016, Art. no. .
  11. C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photon., vol. 9, no. 3, pp. 504–561, p. 562, 2017.
  12. B. Debordet al., “Ultra low transmission loss in inhibited-coupling guiding hollow core fibers,” Optica, vol. 4, no. 2, pp. 209–217, 2017.
  13. B. J. Manganet al., “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. PDP Opt. Fiber Commun. Conf., 2004, Paper PDP24.
  14. M. B. S. Nawazuddinet al., “Lotus shaped negative curvature hollow core fiber with 10.5 dB/km at 1550 nm wavelength,” in Proc. 43rd Eur. Conf. Opt. Commun., 2017, Paper Tu.1.A.2.
  15. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express, vol. 22, pp. 23807–23828, 2014.
  16. T. D. Bradleyet al., “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Opt. Express, vol. 24, no. 14, pp. 15798–15812, 2016.
  17. V. Bocket al., “Modal content measurements (S2) of negative curvature hollow-core photonic crystal fibers,” Opt. Express, vol. 25, no. 4, pp. 3006–3012, 2017.

2017 (5)

N. V. Wheeleret al., “Low loss Kagome hollow core fibers operating from the near- to the mid-IR,” Opt. Lett., vol. 42, no. 13, pp. 2571–2574, 2017.

J. R. Hayeset al., “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightw. Technol., vol. 35, no. 3, pp. 437–442,  2017.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photon., vol. 9, no. 3, pp. 504–561, p. 562, 2017.

B. Debordet al., “Ultra low transmission loss in inhibited-coupling guiding hollow core fibers,” Optica, vol. 4, no. 2, pp. 209–217, 2017.

V. Bocket al., “Modal content measurements (S2) of negative curvature hollow-core photonic crystal fibers,” Opt. Express, vol. 25, no. 4, pp. 3006–3012, 2017.

2016 (4)

T. D. Bradleyet al., “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Opt. Express, vol. 24, no. 14, pp. 15798–15812, 2016.

F. Yu and J. C. Knight, “Negative curvature hollow core optical fiber,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 2,  2016, Art. no. .

Y. Chenet al., “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightw. Technol., vol. 34, no. 1, pp. 104–113,  2016.

C. Saraceno, F. Emaury, A. Diebold, I. Graumann, M. Golling, and U. Keller, “Trends in high-power ultrafast lasers,” Proc. SPIE, vol. 9835, 2016, Art. no. .

2014 (1)

2013 (1)

F. Polettiet al., “Towards high-capacity fiber-optic communications at the speed of light in vacuum,” Nature Photon., vol. 7, no. 4. pp. 279–284, 2013.

2011 (2)

Benabid, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission hypocloid-core Kagome hollow core photonic crystal fiber,” Opt. Lett., vol. 36, no. 5, pp. 669–671, 2011.

F. Benabid and P. S. J. Russell, “Hollow core photonic crystal fibers: A new regime for nonlinear optics and laser-induced guidance,” in Proc. 6th Int. Conf. Transp. Opt. Netw., 2004, vol. 2, pp. 84–90.

Biriukov, A. S.

Bock, V.

Bradley, T. D.

Chen, Y.

Y. Chenet al., “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightw. Technol., vol. 34, no. 1, pp. 104–113,  2016.

Couny, F.

Debord, B.

Dianov, E. M.

Diebold, A.

C. Saraceno, F. Emaury, A. Diebold, I. Graumann, M. Golling, and U. Keller, “Trends in high-power ultrafast lasers,” Proc. SPIE, vol. 9835, 2016, Art. no. .

Emaury, F.

C. Saraceno, F. Emaury, A. Diebold, I. Graumann, M. Golling, and U. Keller, “Trends in high-power ultrafast lasers,” Proc. SPIE, vol. 9835, 2016, Art. no. .

Golling, M.

C. Saraceno, F. Emaury, A. Diebold, I. Graumann, M. Golling, and U. Keller, “Trends in high-power ultrafast lasers,” Proc. SPIE, vol. 9835, 2016, Art. no. .

Graumann, I.

C. Saraceno, F. Emaury, A. Diebold, I. Graumann, M. Golling, and U. Keller, “Trends in high-power ultrafast lasers,” Proc. SPIE, vol. 9835, 2016, Art. no. .

Hayes, J. R.

J. R. Hayeset al., “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightw. Technol., vol. 35, no. 3, pp. 437–442,  2017.

Hu, J.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photon., vol. 9, no. 3, pp. 504–561, p. 562, 2017.

Keller, U.

C. Saraceno, F. Emaury, A. Diebold, I. Graumann, M. Golling, and U. Keller, “Trends in high-power ultrafast lasers,” Proc. SPIE, vol. 9835, 2016, Art. no. .

Knight, J. C.

F. Yu and J. C. Knight, “Negative curvature hollow core optical fiber,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 2,  2016, Art. no. .

Kosolapov, A. F.

Mangan, B. J.

B. J. Manganet al., “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. PDP Opt. Fiber Commun. Conf., 2004, Paper PDP24.

Menyuk, C. R.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photon., vol. 9, no. 3, pp. 504–561, p. 562, 2017.

Nawazuddin, M. B. S.

M. B. S. Nawazuddinet al., “Lotus shaped negative curvature hollow core fiber with 10.5 dB/km at 1550 nm wavelength,” in Proc. 43rd Eur. Conf. Opt. Commun., 2017, Paper Tu.1.A.2.

Plotnichenko, V. G.

Poletti, F.

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express, vol. 22, pp. 23807–23828, 2014.

F. Polettiet al., “Towards high-capacity fiber-optic communications at the speed of light in vacuum,” Nature Photon., vol. 7, no. 4. pp. 279–284, 2013.

Pryamikov, A. D.

Roberts, P. J.

Russell, P. S. J.

F. Benabid and P. S. J. Russell, “Hollow core photonic crystal fibers: A new regime for nonlinear optics and laser-induced guidance,” in Proc. 6th Int. Conf. Transp. Opt. Netw., 2004, vol. 2, pp. 84–90.

Saraceno, C.

C. Saraceno, F. Emaury, A. Diebold, I. Graumann, M. Golling, and U. Keller, “Trends in high-power ultrafast lasers,” Proc. SPIE, vol. 9835, 2016, Art. no. .

Semjonov, S. L.

Wang, Y. Y.

Wei, C.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photon., vol. 9, no. 3, pp. 504–561, p. 562, 2017.

Weiblen, R. J.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photon., vol. 9, no. 3, pp. 504–561, p. 562, 2017.

Wheeler, N. V.

Yu, F.

F. Yu and J. C. Knight, “Negative curvature hollow core optical fiber,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 2,  2016, Art. no. .

Adv. Opt. Photon. (1)

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photon., vol. 9, no. 3, pp. 504–561, p. 562, 2017.

IEEE J. Sel. Topics Quantum Electron. (1)

F. Yu and J. C. Knight, “Negative curvature hollow core optical fiber,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 2,  2016, Art. no. .

J. Lightw. Technol. (2)

J. R. Hayeset al., “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightw. Technol., vol. 35, no. 3, pp. 437–442,  2017.

Y. Chenet al., “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightw. Technol., vol. 34, no. 1, pp. 104–113,  2016.

Nature Photon. (1)

F. Polettiet al., “Towards high-capacity fiber-optic communications at the speed of light in vacuum,” Nature Photon., vol. 7, no. 4. pp. 279–284, 2013.

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Proc. SPIE (1)

C. Saraceno, F. Emaury, A. Diebold, I. Graumann, M. Golling, and U. Keller, “Trends in high-power ultrafast lasers,” Proc. SPIE, vol. 9835, 2016, Art. no. .

Other (4)

F. Benabid and P. S. J. Russell, “Hollow core photonic crystal fibers: A new regime for nonlinear optics and laser-induced guidance,” in Proc. 6th Int. Conf. Transp. Opt. Netw., 2004, vol. 2, pp. 84–90.

N. V. Wheeleret al., “Low loss Kagome fiber in the 1 um wavelength region,” in Proc. Specialty Opt. Fibers Meeting Adv. Photon. Congr., 2016, Paper SoM3F.2.

B. J. Manganet al., “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. PDP Opt. Fiber Commun. Conf., 2004, Paper PDP24.

M. B. S. Nawazuddinet al., “Lotus shaped negative curvature hollow core fiber with 10.5 dB/km at 1550 nm wavelength,” in Proc. 43rd Eur. Conf. Opt. Commun., 2017, Paper Tu.1.A.2.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.