Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 12,
  • pp. 3950-3960
  • (2021)

Tracking Single Particles Using Surface Plasmon Leakage Radiation Speckle

Not Accessible

Your library or personal account may give you access

Abstract

Label free tracking of small bio-particles such as proteins or viruses is of great utility in the study of biological processes, however such experiments are frequently hindered by weak signal strengths and a susceptibility to scattering impurities. To overcome these problems we here propose a novel technique leveraging the enhanced sensitivity of both interferometric detection and the strong field confinement of surface plasmons. Specifically, we show that interference between the field scattered by an analyte particle and a speckle reference field, derived from random scattering of surface plasmons propagating on a rough metal film, enables particle tracking with sub-wavelength accuracy. We present the analytic framework of our technique and verify its robustness to noise through Monte Carlo simulations.

PDF Article
More Like This
Tracking surface plasmon pulses using ultrafast leakage imaging

Yuri Gorodetski, Thibault Chervy, Shaojun Wang, James A. Hutchison, Aurélien Drezet, Cyriaque Genet, and Thomas W. Ebbesen
Optica 3(1) 48-53 (2016)

Surface plasmon leakage radiation microscopy at the diffraction limit

A. Hohenau, J. R. Krenn, A. Drezet, O. Mollet, S. Huant, C. Genet, B. Stein, and T. W. Ebbesen
Opt. Express 19(25) 25749-25762 (2011)

Directional excitation of surface plasmon polaritons via nanoslits under varied incidence observed using leakage radiation microscopy

Yannick Sonnefraud, Sarp Kerman, Giuliana Di Martino, Dang Yuan Lei, and Stefan A. Maier
Opt. Express 20(5) 4893-4902 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.