Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 12,
  • pp. 3998-4005
  • (2021)

Temperature-Insensitive Mechanical Sensor Using Multi-Modal Behavior of Antiresonant Hollow-Core Fibers

Not Accessible

Your library or personal account may give you access

Abstract

We present the first report on a compact, temperature-insensitive, multi-axial mechanical force sensor based on a single-core antiresonant hollow-core fiber (ARHCF). Single-core antiresonant fibers are inherently few-moded in a short length and show characteristic multimode interference pattern in their transmission spectrum. We report here a simple technique that enhances the interaction between the interfering modes in these fibers, giving rise to up to four-fold increase in the peak-to-peak amplitude of the interference pattern. The enhanced interference pattern is shown to be responsive to external mechanical forces, like longitudinal and transverse strain and curvature, with distinguishable linear responses. Transverse and longitudinal mechanical forces affect different attributes of the interference pattern, making the proposed sensor suitable for their simultaneous sensing. The temperature sensitivity of the sensor is found to be 3.3 pm/°C suggesting negligible thermal crosstalk while measuring the effect of mechanical forces. The sensor has a compact configuration and is inherently insensitive to polarization of light used.

PDF Article
More Like This
Highly sensitive temperature and strain sensor based on an antiresonant hollow core fiber probe with the Vernier effect

Xiaonan Zhao, Xuqiang Wu, Shengquan Mu, Cheng Zuo, Jinhui Shi, Dong Guang, Benli Yu, Yangzhou Liu, Jihao Zhang, and Xingyu Liu
Appl. Opt. 61(27) 8133-8138 (2022)

Modal analysis of antiresonant hollow core fibers using S2 imaging

Amy Van Newkirk, J. E. Antonio-Lopez, James Anderson, Roberto Alvarez-Aguirre, Zeinab Sanjabi Eznaveh, Gisela Lopez-Galmiche, Rodrigo Amezcua-Correa, and Axel Schülzgen
Opt. Lett. 41(14) 3277-3280 (2016)

Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing

Maoxiang Hou, Feng Zhu, Ying Wang, Yiping Wang, Changrui Liao, Shen Liu, and Peixiang Lu
Opt. Express 24(24) 27890-27898 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.