Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 18,
  • pp. 5766-5782
  • (2021)

Temporal Energy Analysis of Symbol Sequences for Fiber Nonlinear Interference Modelling via Energy Dispersion Index

Not Accessible

Your library or personal account may give you access

Abstract

The stationary statistical properties of independent, identically distributed (i.i.d.) input symbols provide insights on the induced nonlinear interference (NLI) during fiber transmission. For example, kurtosis is known to predict the modulation format-dependent NLI. These statistical properties can be used in the design of probabilistic amplitude shaping (PAS), which relies on an amplitude shaper for increasing spectral efficiencies of fiber-optic systems. One property of certain shapers used in PAS—including constant-composition distribution matchers—that is often overlooked is that a time-dependency between amplitudes is introduced. This dependency results in symbols that are non-i.i.d., which have time-varying statistical properties. Somewhat surprisingly, the effective signal-to-noise ratio (SNR) in PAS has been shown to increase when the shaping blocklength decreases. This blocklength dependency of SNR has been attributed to time-varying statistical properties of the symbol sequences, in particular, to variation of the symbol energies. In this paper, we investigate the temporal energy behavior of symbol sequences, and introduce a new metric called energy dispersion index (EDI). EDI captures the time-varying statistical properties of symbol energies. Numerical results show strong correlations between EDI and effective SNR, with absolute correlation coefficients above 99% for different transmission distances.

PDF Article
More Like This
Nonlinearity aware bisection-based sphere shaping for optical digital subcarrier multiplexing systems

Zelin Gan, Xiang Li, and Seb J. Savory
Opt. Express 30(24) 44118-44131 (2022)

Orthant-symmetric four-dimensional geometric shaping for fiber-optic channels via a nonlinear interference model

Bin Chen, Wei Ling, Yi Lei, Zhiwei Liang, and Xuwei Xue
Opt. Express 31(10) 16985-17002 (2023)

Nonlinear-tolerant two-dimensional distribution matcher scheme for probabilistic shaping

Yanan Luo, Bin Chen, and Qin Huang
Opt. Lett. 49(8) 2069-2072 (2024)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.