Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 18,
  • pp. 5815-5827
  • (2021)

Linearisation Method of DML-Based Transmitters for Optical Communications Part I: Theory and Simulation Studies

Not Accessible

Your library or personal account may give you access

Abstract

The performance of directly-modulated lasers (DMLs) is severely impaired by nonlinear behaviour when operating at high symbol rates. We propose a new linearization method for DML-based transmitters which can significantly reduce nonlinearity. This method, named the “Stretched A” (StrA) method, relies on the generation of an approximation to the ideal modulating current that generates a linear optical output waveform. In Part I of this work, the theoretical framework of the proposed method is presented and detailed simulation studies illustrate its implementation and demonstrate the benefits it offers. Although the method is applicable to any type of DML, the simulation studies presented herein focus on optical links based on vertical-cavity surface-emitting lasers (VCSELs) as these comprise the vast majority of short-reach optical links. Part II of this work presents the proof-of-principle experimental demonstration of this new linearization method and discusses its possible implementations using either analog or digital electronics.

PDF Article
More Like This
Periodic nonlinear Fourier transform for fiber-optic communications, Part I: theory and numerical methods

Morteza Kamalian, Jaroslaw E. Prilepsky, Son Thai Le, and Sergei K. Turitsyn
Opt. Express 24(16) 18353-18369 (2016)

Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part I: Theory and simulations

Wei-Chuan Shih, Kate L. Bechtel, and Michael S. Feld
Opt. Express 16(17) 12726-12736 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.