Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 2,
  • pp. 475-480
  • (2021)

Feedforward and Recurrent Neural Network-Based Transfer Learning for Nonlinear Equalization in Short-Reach Optical Links

Not Accessible

Your library or personal account may give you access

Abstract

Neural network (NN)-based nonlinear equalizers have been shown effective for various types of short-reach direct detection systems. However, they work best for a certain channel condition and need to be trained again when the channel environment is changed, which hinders the efficient deployment of future optical switched data center networks. In this article, we propose transfer learning (TL)-aided feedforward neural networks (FNN) and recurrent neural networks (RNN) for nonlinear equalization in short-reach direct detection optical links, which enables a fast transition to new equalizers when the channel condition is changed. A 50-Gb/s 20-km pulse amplitude modulation (PAM)-4 optical link is experimentally demonstrated as the target system, and links of varying bit-rates and fiber lengths are selected as the source system. Experimental results show that TL could help reduce the number of epochs and training symbols of FNNs/RNNs required for nonlinear equalization in the target system, taking advantage of FNNs/RNNs trained for source systems. A reduction of 90%/87.5% in epochs and 62.5%/53.8% in training symbols is achieved with FNNs/RNNs transferred from the most similar source system. We also find that FNNs can be transferred to their corresponding RNNs for equalization in the target system, while TL from RNNs to FNNs cannot work properly. TL enables a fast transition between different NN-based equalizers, which is critical for future optical switched data center networks, where the optical links need to be dynamically reconfigured.

PDF Article
More Like This
Cascade recurrent neural network-assisted nonlinear equalization for a 100 Gb/s PAM4 short-reach direct detection system

Zhaopeng Xu, Chuanbowen Sun, Tonghui Ji, Jonathan H. Manton, and William Shieh
Opt. Lett. 45(15) 4216-4219 (2020)

Computational complexity comparison of feedforward/radial basis function/recurrent neural network-based equalizer for a 50-Gb/s PAM4 direct-detection optical link

Zhaopeng Xu, Chuanbowen Sun, Tonghui Ji, Jonathan H. Manton, and William Shieh
Opt. Express 27(25) 36953-36964 (2019)

Optimizations and investigations for transfer learning of iteratively pruned neural network equalizers for data center networking

Jiawang Xiao, Lin Sun, Caoyang Liu, and Gordon Ning Liu
Opt. Express 30(20) 36358-36367 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.