Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 20,
  • pp. 6637-6645
  • (2021)

Opto-Mechanical Fiber Sensing of Gamma Radiation

Open Access Open Access

Abstract

The monitoring of ionizing radiation is critical for the safe operation of nuclear and other high-power plants. Fiber-optic sensing of radiation has been pursued for over 45 years. Most protocols rely on radiation effects on the optical properties of the fiber. Here we propose a new concept, in which the opto-mechanics of standard fibers coated by thin layers of fluoroacrylate polymer are observed instead. The time-of-flight of radial acoustic waves through the coating is evaluated by forward stimulated Brillouin scattering measurements. The time-of-flight is seen to decrease monotonically with the overall dosage of gamma radiation from a cobalt source. Variations reach 15% of the initial value for 180 Mrad dose and remain stable for at least several weeks following exposure. The faster times-of-flight are consistent with a radiation-induced increase in the coating stiffness, observed in offline analysis. The effects on the coating are independent of possible changes in the optical parameters of the fiber. The combination of opto-mechanical analysis together with established fiber sensing protocols may help disambiguate the evaluation of multiple radiation metrics and reduce environmental cross-sensitivities. The technique is suitable for online monitoring and may be extended to spatially distributed measurements.

PDF Article

References

  • View by:

  1. Y. Sanada, T. Sugita, Y. Nishizawa, A. Kondo, and Torii T, “The aerial radiation monitoring in japan after the fukushima daiichi nuclear power plant accident,” Prog. Nucl. Sci. Technol., vol. 4, no. 7, pp. 76–80, 2014.
  2. K. R. Kase, Ed. The Dosimetry of Ionizing Radiation. Orlando FL, USA: Academic Press, 1985.
  3. P. Andreo, D. T. Burns, A. E. Nahum, J. Seuntjens, and F. H. Attix, Fundamentals of Ionizing Radiation Dosimetry. Weinheim, Germany: Wiley, 2017.
  4. E. Udd and W. B. Spillman, Eds. Fiber Optic Sensors: An Introduction For Engineers and Scientists, 2nd ed., Hoboken NJ, USA: Wiley, 2011.
  5. K. T. V. Grattan and B. T. Meggit, Eds. Optical Fiber Sensor Technology Volume 4, Chemical and Environmental Sensing. Dordrecht, the Netherlands: Kluwer Academic Publishers, 2010.
  6. M. K. Barnoski and S. M. Jensen, “Fiber waveguides: A novel technique for investigating attenuation characteristics,” Appl. Opt., vol. 15, no. 9, pp. 2112–2115, 1976.
  7. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett., vol. 15, no. 18, pp. 1038–1040, 1990.
  8. M. Niklès, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett., vol. 21, no. 10, pp. 758–760, 1996.
  9. E. J. Friebele, D. L. Griscom, and G. H. Sigel, “Defect centers in a germanium-doped silica core optical fiber,” J. Appl. Phys., vol. 45, no. 8, pp. 3424–3428, 1974.
  10. I. Toccafondo, “Distributed optical fiber radiation sensing in a mixed-field radiation environment at CERN,” J. Lightw. Technol., vol. 35, no. 16, pp. 3303–3310, 2017.
  11. D. Di Francesca, “Qualification and calibration of single-mode phosphosilicate optical fiber for dosimetry at CERN,” J. Lightw. Technol., vol. 37, no. 18, pp. 4643–4649, 2019.
  12. G. Cheymol, H. Long, J. F. Villard, and B. Brichard, “High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2252–2258, 2008.
  13. H. Henschel, O. Köhn, and H. U. Schmidt, “Optical fibres as radiation dosimeters,” Nucl. Instrum. Methods Phys. Res. B, vol. 69, no. 2/3, pp. 307–314, 1992.
  14. A. L. Tomashuk, M. V. Grekov, S. A. Vasiliev, and V. V. Svetukhin, “Fiber-optic dosimeter based on radiation-induced attenuation in P-doped fiber: Suppression of post-irradiation fading by using two working wavelengths in visible range,” Opt. Exp., vol. 22, no. 14, pp. 16778–16783, 2014.
  15. S. Girard, “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 2015–2036, 2013.
  16. S. Girard, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt., vol. 20, no. 9, 2018, Art. no. .
  17. A. Faustov, “Highly radiation sensitive type IA FBGs for future dosimetry applications,” IEEE Trans. Nucl. Sci., vol. 59, no. 4, pp. 1180–1185, 2012.
  18. F. Berghmans and A. Gusarov, “Fiber Bragg grating sensors in space and nuclear environments,” in Fiber Bragg Gratings Sensors: Thirty Years from Research to Market, A. Cusano, A. Cutolo, and J. Albert, Eds. Sharjah, United Arab Emirates: Bentham Science, 2011, pp. 218–237.
  19. K. Krebber, H. Henschel, and U. Weinand, “Fibre Bragg gratings as high dose radiation sensors?” Meas. Sci. Technol., vol. 17, no. 5, pp. 1095–1102, 2006.
  20. A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B, vol. 184, no. 1-2, pp. 55–67, 2001.
  21. D. Sporea, A. Sporea, S. O'Keeffe, D. McCarthy, and E. Lewis, “Optical fibers and optical fiber sensors used in radiation monitoring,” in Selected Topics on Optical Fiber Technology, M. Yasin, S. W. Harun, and H. Arof, Eds., London, UK: Intech Open, 2012.
  22. E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp. 1115–1119, 2007.
  23. S. Girard, “Radiation effects on silica-based preforms and optical fibers - I: Experimental study with canonical samples,” IEEE Trans. Nucl. Sci., vol. 55, no. 6, pp. 3473–3482, 2008.
  24. A. V. Faustov, “Comparison of gamma-radiation induced attenuation in al-doped, P-Doped and ge-doped fibres for dosimetry,” IEEE Trans. Nucl. Sci., vol. 60, no. 4, pp. 2511–2517, 2013.
  25. M. Govindarajan and W. Windl, “Atomic-scale modeling of the effects of irradiation on the optical properties of silica glass fibers,” Trans. Amer. Nucl. Soc., vol. 104, no. 1, pp. 33–34, 2011.
  26. A. I. Gusarov and S. K. Hoeffgen, “Radiation effects of fiber gratings,” IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 2037–2053, 2013.
  27. P. Niay, “Behaviour of Bragg gratings, written in germanosilicate fibers, against γ-ray exposure at low dose rate,” IEEE Photon. Technol. Lett., vol. 6, no. 11, pp. 1350–1352, 1994.
  28. H. Henschel, S. K. Hoeffgen, K. Krebber, J. Kuhnhenn, and U. Weinand, “Influence of fiber composition and grating fabrication on the radiation sensitivity of fiber Bragg gratings,” in Proc. IEEE, 9th Eur. Conf. Radiat. Effects Compon. Syst., 2007, pp. 1–8.
  29. S. Girard, “Overview of radiation induced point defects in silica-based optical fibers,” Rev. Phys., vol. 4, 2019, Art. no. 032.
  30. H. Henschel, D. Grobnic, S. K. Hoeffgen, J. Kuhnhenn, S. J. Mihailov, and U. Weinand, “Development of highly radiation resistant fiber Bragg gratings,” IEEE Trans. Nucl. Sci., vol. 58, no. 4, pp. 2103–2110, 2011.
  31. A. Morana, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett., vol. 39, no. 18, pp. 5313–5316, 2014.
  32. G. L. Vecchi, “Infrared radiation induced attenuation of radiation sensitive optical fibers: Influence of temperature and modal propagation,” Opt. Fiber Technol., vol. 55, 2020, Art. no. .
  33. D. Alasia, A. Fernandez Fernandez, L. Abrardi, B. Brichard, and L. Thévenaz, “The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres,” Meas. Sci. Technol., vol. 17, no. 5, pp. 1091–1094, 2006.
  34. X. Phéron, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Exp., vol. 20, no. 24, pp. 26978–26985, 2012.
  35. A. Morana, “Steady-state radiation-induced effects on the performances of BOTDA and BOTDR optical fiber sensors,” IEEE Trans. Nucl. Sci., vol. 65, no. 1, pp. 111–118, 2018.
  36. W. Primak, “Fast-neutron-induced changes in quartz and vitreous silica,” Phys. Rev. B, vol. 110, no. 6, pp. 1240–1254, 1958.
  37. A. A. Stolov, B. E. Slyman, D. T. Burgess, A. S. Hokansson, J. Li, and R. S. Allen, “Effects of sterilization methods on key properties of specialty optical fibers used in medical devices,” Proc. SPIE Opt. Fibers Sensors for Med. Diagnostics Treat. Appl. XIII, 857606, 2013, vol. 8576.
  38. A. A. Stolov, “Effects of sterilization on optical and mechanical reliability of specialty optical fibers and terminations,” Proc. SPIE Opt. Fibers Sensors for Med. Diagnostics Treat. Appl. XIV, 893806, 2014, vol. 8938.
  39. S. Rizzolo, “Radiation hardened optical frequency domain reflectometry distributed temperature fiber-based sensors,” IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 2988–2994, 2015.
  40. S. Rizzolo, “Investigation of coating impact on OFDR optical remote fiber-based sensors performances for their integration in high temperature and radiation environments,” J. Lightw. Technol., vol. 34, no. 19, pp. 4460–4465, 2016.
  41. S. Rizzolo, “Radiation characterization of optical frequency domain reflectometry fiber-based distributed sensors,” IEEE Trans. Nucl. Sci., vol. 63, no. 3, pp. 1688–1693, 2016.
  42. S. Rizzolo, “Evaluation of distributed OFDR-based sensing performance in mixed neutron/gamma radiation environments,” IEEE Trans. Nucl. Sci., vol. 64, no. 1, pp. 61–67, 2017.
  43. G. Mélin, “Radiation resistant single-mode fiber with different coatings for sensing in high dose environments,” IEEE Trans. Nucl. Sci., vol. 66, no. 7, pp. 1657–1662, 2019.
  44. Y. Antman, A. Clain, Y. London, and A. Zadok, “Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering,” Optica, vol. 3, no. 5, pp. 510–516, 2016.
  45. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B, vol. 31, no. 8, pp. 5244–5252, 1985.
  46. G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Optomechanical time-domain reflectometry,” Nature Commun., vol. 9, 2018. Art. no. .
  47. D. Chow, Z. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nature Commun, vol. 9, 2018. Art. no. .
  48. C. Pang, “Opto-mechanical time-domain analysis based on coherent forward stimulated Brillouin scattering probing,” Optica, vol. 7, no. 2, pp. 176–184, 2020.
  49. S. Zaslawski, Z. Yang, and L. Thévenaz, “Distributed optomechanical fiber sensing based on serrodyne analysis,” Optica, vol. 8, no. 3, pp. 388–395, 2021.
  50. D. M. Chow and L. Thévenaz, “Forward Brillouin scattering acoustic impedance sensor using thin polyimide-coated fiber,” Opt. Lett., vol. 43, no. 21, pp. 5467–5470, 2018.
  51. H. H. Diamandi, Y. London, G. Bashan, and A. Zadok, “Distributed opto-mechanical analysis of liquids outside standard fibers coated with polyimide,” Appl. Phys. Lett.Photon., vol. 4, no. 1, 2019. Art. no. .
  52. H. Diamandi, Y. London, G. Bashan, K. Shemer, and A. Zadok, “Forward stimulated Brillouin scattering analysis of optical fibers coatings,” J. Lightw. Technol., vol. 39, no. 6, pp. 1800–1807, 2021.
  53. B. J. Briscoe, L. Fiori, and E. Pelillo, “Nano-indentation of polymeric surfaces,” J. Phys. D: Appl. Phys., vol. 31, pp. 2395–2405, 1998.
  54. K. A. Rzepiejewska-Malyska, “In situ mechanical observations during nanoindentation inside a high-resolution scanning electron microscope,” J. Mater. Res., vol. 23, no. 7, pp. 1973–1979, 2008.
  55. D. A. Simoff, A. A. Stolov, H. Wu, N. E. Reyngold, and X. Sun, “Evolution of fluoropolymer clad fibers,” in Proc. 66th Int. Wire Cable Symp., 2017, pp. 29–38.
  56. M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial raman oscillators,” Nat. Phys., vol. 5, pp. 276–280, 2009.
  57. G. Berkovic, “Characterization of radiation hardened fibers in a research grade nuclear reactor,” in Proc. SPIE Micro-structured Specialty Opt. Fibres VII, 2021, vol. 11773 Art. no. .
  58. A. A. Stolov and D. A. Simoff, “Infrared ATR and reflection micro-spectroscopy as in-situ characterization techniques for optical fibers and their coatings,” in Infrared Spectroscopy. Theory, Development and Applications. New York NY, USA: Nova Science Publishers, 2014, pp. 403–468.
  59. M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength measurement of optical fibers by bending,” J. Am. Ceram. Soc., vol. 69, no. 11, pp. 815–821, 1986.
  60. G. Bolognini and A. Hartog, “Raman-based fibre sensors: Trends and applications,” Opt. Fiber Technol., vol. 19, no. 6, pp. 678–688, 2013.
  61. J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-Range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J., vol. 6, no. 3, pp. 1–8, 2014.
  62. J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Exp., vol. 24, no. 12, pp. 13121–13133, 2016.
  63. Z. Zheng, Z. Li, X. Fu, L. Wang, and H. Wang, “Multipoint acoustic impedance sensing based on frequency-division multiplexed forward stimulated Brillouin scattering,” Opt. Lett., vol. 45, no. 16, pp. 4523–4526, 2020.
  64. A. Piccolo, S. Delepine-Lesoille, M. Landolt, S. Girard, Y. Ouerdane, and C. Sabatier, “Coupled temperature and γ-radiation effect on silica-based optical fiber strain sensors based on rayleigh and Brillouin scatterings,” Opt. Exp., vol. 27, no. 15, pp. 21608–21621, 2019.

2021 (2)

H. Diamandi, Y. London, G. Bashan, K. Shemer, and A. Zadok, “Forward stimulated Brillouin scattering analysis of optical fibers coatings,” J. Lightw. Technol., vol. 39, no. 6, pp. 1800–1807, 2021.

S. Zaslawski, Z. Yang, and L. Thévenaz, “Distributed optomechanical fiber sensing based on serrodyne analysis,” Optica, vol. 8, no. 3, pp. 388–395, 2021.

2020 (3)

2019 (5)

H. H. Diamandi, Y. London, G. Bashan, and A. Zadok, “Distributed opto-mechanical analysis of liquids outside standard fibers coated with polyimide,” Appl. Phys. Lett.Photon., vol. 4, no. 1, 2019. Art. no. .

G. Mélin, “Radiation resistant single-mode fiber with different coatings for sensing in high dose environments,” IEEE Trans. Nucl. Sci., vol. 66, no. 7, pp. 1657–1662, 2019.

D. Di Francesca, “Qualification and calibration of single-mode phosphosilicate optical fiber for dosimetry at CERN,” J. Lightw. Technol., vol. 37, no. 18, pp. 4643–4649, 2019.

A. Piccolo, S. Delepine-Lesoille, M. Landolt, S. Girard, Y. Ouerdane, and C. Sabatier, “Coupled temperature and γ-radiation effect on silica-based optical fiber strain sensors based on rayleigh and Brillouin scatterings,” Opt. Exp., vol. 27, no. 15, pp. 21608–21621, 2019.

S. Girard, “Overview of radiation induced point defects in silica-based optical fibers,” Rev. Phys., vol. 4, 2019, Art. no. 032.

2018 (5)

A. Morana, “Steady-state radiation-induced effects on the performances of BOTDA and BOTDR optical fiber sensors,” IEEE Trans. Nucl. Sci., vol. 65, no. 1, pp. 111–118, 2018.

S. Girard, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt., vol. 20, no. 9, 2018, Art. no. .

D. Chow, Z. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nature Commun, vol. 9, 2018. Art. no. .

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Optomechanical time-domain reflectometry,” Nature Commun., vol. 9, 2018. Art. no. .

D. M. Chow and L. Thévenaz, “Forward Brillouin scattering acoustic impedance sensor using thin polyimide-coated fiber,” Opt. Lett., vol. 43, no. 21, pp. 5467–5470, 2018.

2017 (2)

S. Rizzolo, “Evaluation of distributed OFDR-based sensing performance in mixed neutron/gamma radiation environments,” IEEE Trans. Nucl. Sci., vol. 64, no. 1, pp. 61–67, 2017.

I. Toccafondo, “Distributed optical fiber radiation sensing in a mixed-field radiation environment at CERN,” J. Lightw. Technol., vol. 35, no. 16, pp. 3303–3310, 2017.

2016 (4)

S. Rizzolo, “Radiation characterization of optical frequency domain reflectometry fiber-based distributed sensors,” IEEE Trans. Nucl. Sci., vol. 63, no. 3, pp. 1688–1693, 2016.

S. Rizzolo, “Investigation of coating impact on OFDR optical remote fiber-based sensors performances for their integration in high temperature and radiation environments,” J. Lightw. Technol., vol. 34, no. 19, pp. 4460–4465, 2016.

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Exp., vol. 24, no. 12, pp. 13121–13133, 2016.

Y. Antman, A. Clain, Y. London, and A. Zadok, “Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering,” Optica, vol. 3, no. 5, pp. 510–516, 2016.

2015 (1)

S. Rizzolo, “Radiation hardened optical frequency domain reflectometry distributed temperature fiber-based sensors,” IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 2988–2994, 2015.

2014 (4)

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-Range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J., vol. 6, no. 3, pp. 1–8, 2014.

A. L. Tomashuk, M. V. Grekov, S. A. Vasiliev, and V. V. Svetukhin, “Fiber-optic dosimeter based on radiation-induced attenuation in P-doped fiber: Suppression of post-irradiation fading by using two working wavelengths in visible range,” Opt. Exp., vol. 22, no. 14, pp. 16778–16783, 2014.

A. Morana, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett., vol. 39, no. 18, pp. 5313–5316, 2014.

Y. Sanada, T. Sugita, Y. Nishizawa, A. Kondo, and Torii T, “The aerial radiation monitoring in japan after the fukushima daiichi nuclear power plant accident,” Prog. Nucl. Sci. Technol., vol. 4, no. 7, pp. 76–80, 2014.

2013 (4)

S. Girard, “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 2015–2036, 2013.

A. V. Faustov, “Comparison of gamma-radiation induced attenuation in al-doped, P-Doped and ge-doped fibres for dosimetry,” IEEE Trans. Nucl. Sci., vol. 60, no. 4, pp. 2511–2517, 2013.

A. I. Gusarov and S. K. Hoeffgen, “Radiation effects of fiber gratings,” IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 2037–2053, 2013.

G. Bolognini and A. Hartog, “Raman-based fibre sensors: Trends and applications,” Opt. Fiber Technol., vol. 19, no. 6, pp. 678–688, 2013.

2012 (2)

A. Faustov, “Highly radiation sensitive type IA FBGs for future dosimetry applications,” IEEE Trans. Nucl. Sci., vol. 59, no. 4, pp. 1180–1185, 2012.

X. Phéron, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Exp., vol. 20, no. 24, pp. 26978–26985, 2012.

2011 (2)

H. Henschel, D. Grobnic, S. K. Hoeffgen, J. Kuhnhenn, S. J. Mihailov, and U. Weinand, “Development of highly radiation resistant fiber Bragg gratings,” IEEE Trans. Nucl. Sci., vol. 58, no. 4, pp. 2103–2110, 2011.

M. Govindarajan and W. Windl, “Atomic-scale modeling of the effects of irradiation on the optical properties of silica glass fibers,” Trans. Amer. Nucl. Soc., vol. 104, no. 1, pp. 33–34, 2011.

2009 (1)

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial raman oscillators,” Nat. Phys., vol. 5, pp. 276–280, 2009.

2008 (3)

G. Cheymol, H. Long, J. F. Villard, and B. Brichard, “High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2252–2258, 2008.

S. Girard, “Radiation effects on silica-based preforms and optical fibers - I: Experimental study with canonical samples,” IEEE Trans. Nucl. Sci., vol. 55, no. 6, pp. 3473–3482, 2008.

K. A. Rzepiejewska-Malyska, “In situ mechanical observations during nanoindentation inside a high-resolution scanning electron microscope,” J. Mater. Res., vol. 23, no. 7, pp. 1973–1979, 2008.

2007 (1)

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp. 1115–1119, 2007.

2006 (2)

K. Krebber, H. Henschel, and U. Weinand, “Fibre Bragg gratings as high dose radiation sensors?” Meas. Sci. Technol., vol. 17, no. 5, pp. 1095–1102, 2006.

D. Alasia, A. Fernandez Fernandez, L. Abrardi, B. Brichard, and L. Thévenaz, “The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres,” Meas. Sci. Technol., vol. 17, no. 5, pp. 1091–1094, 2006.

2001 (1)

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B, vol. 184, no. 1-2, pp. 55–67, 2001.

1998 (1)

B. J. Briscoe, L. Fiori, and E. Pelillo, “Nano-indentation of polymeric surfaces,” J. Phys. D: Appl. Phys., vol. 31, pp. 2395–2405, 1998.

1996 (1)

1994 (1)

P. Niay, “Behaviour of Bragg gratings, written in germanosilicate fibers, against γ-ray exposure at low dose rate,” IEEE Photon. Technol. Lett., vol. 6, no. 11, pp. 1350–1352, 1994.

1992 (1)

H. Henschel, O. Köhn, and H. U. Schmidt, “Optical fibres as radiation dosimeters,” Nucl. Instrum. Methods Phys. Res. B, vol. 69, no. 2/3, pp. 307–314, 1992.

1990 (1)

1986 (1)

M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength measurement of optical fibers by bending,” J. Am. Ceram. Soc., vol. 69, no. 11, pp. 815–821, 1986.

1985 (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B, vol. 31, no. 8, pp. 5244–5252, 1985.

1976 (1)

1974 (1)

E. J. Friebele, D. L. Griscom, and G. H. Sigel, “Defect centers in a germanium-doped silica core optical fiber,” J. Appl. Phys., vol. 45, no. 8, pp. 3424–3428, 1974.

1958 (1)

W. Primak, “Fast-neutron-induced changes in quartz and vitreous silica,” Phys. Rev. B, vol. 110, no. 6, pp. 1240–1254, 1958.

Abrardi, L.

D. Alasia, A. Fernandez Fernandez, L. Abrardi, B. Brichard, and L. Thévenaz, “The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres,” Meas. Sci. Technol., vol. 17, no. 5, pp. 1091–1094, 2006.

Achten, F.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp. 1115–1119, 2007.

Alasia, D.

D. Alasia, A. Fernandez Fernandez, L. Abrardi, B. Brichard, and L. Thévenaz, “The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres,” Meas. Sci. Technol., vol. 17, no. 5, pp. 1091–1094, 2006.

Allen, R. S.

A. A. Stolov, B. E. Slyman, D. T. Burgess, A. S. Hokansson, J. Li, and R. S. Allen, “Effects of sterilization methods on key properties of specialty optical fibers used in medical devices,” Proc. SPIE Opt. Fibers Sensors for Med. Diagnostics Treat. Appl. XIII, 857606, 2013, vol. 8576.

Altemus, R.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B, vol. 184, no. 1-2, pp. 55–67, 2001.

Andreo, P.

P. Andreo, D. T. Burns, A. E. Nahum, J. Seuntjens, and F. H. Attix, Fundamentals of Ionizing Radiation Dosimetry. Weinheim, Germany: Wiley, 2017.

Antman, Y.

Attix, F. H.

P. Andreo, D. T. Burns, A. E. Nahum, J. Seuntjens, and F. H. Attix, Fundamentals of Ionizing Radiation Dosimetry. Weinheim, Germany: Wiley, 2017.

Bao, X.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-Range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J., vol. 6, no. 3, pp. 1–8, 2014.

Barnoski, M. K.

Bashan, G.

H. Diamandi, Y. London, G. Bashan, K. Shemer, and A. Zadok, “Forward stimulated Brillouin scattering analysis of optical fibers coatings,” J. Lightw. Technol., vol. 39, no. 6, pp. 1800–1807, 2021.

H. H. Diamandi, Y. London, G. Bashan, and A. Zadok, “Distributed opto-mechanical analysis of liquids outside standard fibers coated with polyimide,” Appl. Phys. Lett.Photon., vol. 4, no. 1, 2019. Art. no. .

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Optomechanical time-domain reflectometry,” Nature Commun., vol. 9, 2018. Art. no. .

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B, vol. 31, no. 8, pp. 5244–5252, 1985.

Berghmans, F.

F. Berghmans and A. Gusarov, “Fiber Bragg grating sensors in space and nuclear environments,” in Fiber Bragg Gratings Sensors: Thirty Years from Research to Market, A. Cusano, A. Cutolo, and J. Albert, Eds. Sharjah, United Arab Emirates: Bentham Science, 2011, pp. 218–237.

Berkovic, G.

G. Berkovic, “Characterization of radiation hardened fibers in a research grade nuclear reactor,” in Proc. SPIE Micro-structured Specialty Opt. Fibres VII, 2021, vol. 11773 Art. no. .

Bolognini, G.

G. Bolognini and A. Hartog, “Raman-based fibre sensors: Trends and applications,” Opt. Fiber Technol., vol. 19, no. 6, pp. 678–688, 2013.

Brenn, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial raman oscillators,” Nat. Phys., vol. 5, pp. 276–280, 2009.

Brichard, B.

G. Cheymol, H. Long, J. F. Villard, and B. Brichard, “High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2252–2258, 2008.

D. Alasia, A. Fernandez Fernandez, L. Abrardi, B. Brichard, and L. Thévenaz, “The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres,” Meas. Sci. Technol., vol. 17, no. 5, pp. 1091–1094, 2006.

Briscoe, B. J.

B. J. Briscoe, L. Fiori, and E. Pelillo, “Nano-indentation of polymeric surfaces,” J. Phys. D: Appl. Phys., vol. 31, pp. 2395–2405, 1998.

Burgess, D. T.

A. A. Stolov, B. E. Slyman, D. T. Burgess, A. S. Hokansson, J. Li, and R. S. Allen, “Effects of sterilization methods on key properties of specialty optical fibers used in medical devices,” Proc. SPIE Opt. Fibers Sensors for Med. Diagnostics Treat. Appl. XIII, 857606, 2013, vol. 8576.

Burns, D. T.

P. Andreo, D. T. Burns, A. E. Nahum, J. Seuntjens, and F. H. Attix, Fundamentals of Ionizing Radiation Dosimetry. Weinheim, Germany: Wiley, 2017.

Chen, L.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-Range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J., vol. 6, no. 3, pp. 1–8, 2014.

Cheymol, G.

G. Cheymol, H. Long, J. F. Villard, and B. Brichard, “High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2252–2258, 2008.

Chow, D.

D. Chow, Z. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nature Commun, vol. 9, 2018. Art. no. .

Chow, D. M.

Clain, A.

Delepine-Lesoille, S.

A. Piccolo, S. Delepine-Lesoille, M. Landolt, S. Girard, Y. Ouerdane, and C. Sabatier, “Coupled temperature and γ-radiation effect on silica-based optical fiber strain sensors based on rayleigh and Brillouin scatterings,” Opt. Exp., vol. 27, no. 15, pp. 21608–21621, 2019.

Di Francesca, D.

D. Di Francesca, “Qualification and calibration of single-mode phosphosilicate optical fiber for dosimetry at CERN,” J. Lightw. Technol., vol. 37, no. 18, pp. 4643–4649, 2019.

Diamandi, H.

H. Diamandi, Y. London, G. Bashan, K. Shemer, and A. Zadok, “Forward stimulated Brillouin scattering analysis of optical fibers coatings,” J. Lightw. Technol., vol. 39, no. 6, pp. 1800–1807, 2021.

Diamandi, H. H.

H. H. Diamandi, Y. London, G. Bashan, and A. Zadok, “Distributed opto-mechanical analysis of liquids outside standard fibers coated with polyimide,” Appl. Phys. Lett.Photon., vol. 4, no. 1, 2019. Art. no. .

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Optomechanical time-domain reflectometry,” Nature Commun., vol. 9, 2018. Art. no. .

Falkenstein, P. L.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B, vol. 184, no. 1-2, pp. 55–67, 2001.

Faustov, A.

A. Faustov, “Highly radiation sensitive type IA FBGs for future dosimetry applications,” IEEE Trans. Nucl. Sci., vol. 59, no. 4, pp. 1180–1185, 2012.

Faustov, A. V.

A. V. Faustov, “Comparison of gamma-radiation induced attenuation in al-doped, P-Doped and ge-doped fibres for dosimetry,” IEEE Trans. Nucl. Sci., vol. 60, no. 4, pp. 2511–2517, 2013.

Fernandez Fernandez, A.

D. Alasia, A. Fernandez Fernandez, L. Abrardi, B. Brichard, and L. Thévenaz, “The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres,” Meas. Sci. Technol., vol. 17, no. 5, pp. 1091–1094, 2006.

Fiori, L.

B. J. Briscoe, L. Fiori, and E. Pelillo, “Nano-indentation of polymeric surfaces,” J. Phys. D: Appl. Phys., vol. 31, pp. 2395–2405, 1998.

Flammer, I.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp. 1115–1119, 2007.

Friebele, E. J.

E. J. Friebele, D. L. Griscom, and G. H. Sigel, “Defect centers in a germanium-doped silica core optical fiber,” J. Appl. Phys., vol. 45, no. 8, pp. 3424–3428, 1974.

Fu, X.

Garcia-Ruiz, A.

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Exp., vol. 24, no. 12, pp. 13121–13133, 2016.

Girard, S.

S. Girard, “Overview of radiation induced point defects in silica-based optical fibers,” Rev. Phys., vol. 4, 2019, Art. no. 032.

A. Piccolo, S. Delepine-Lesoille, M. Landolt, S. Girard, Y. Ouerdane, and C. Sabatier, “Coupled temperature and γ-radiation effect on silica-based optical fiber strain sensors based on rayleigh and Brillouin scatterings,” Opt. Exp., vol. 27, no. 15, pp. 21608–21621, 2019.

S. Girard, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt., vol. 20, no. 9, 2018, Art. no. .

S. Girard, “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 2015–2036, 2013.

S. Girard, “Radiation effects on silica-based preforms and optical fibers - I: Experimental study with canonical samples,” IEEE Trans. Nucl. Sci., vol. 55, no. 6, pp. 3473–3482, 2008.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp. 1115–1119, 2007.

Gonzalez-Herraez, M.

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Exp., vol. 24, no. 12, pp. 13121–13133, 2016.

Gooijer, F.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp. 1115–1119, 2007.

Govindarajan, M.

M. Govindarajan and W. Windl, “Atomic-scale modeling of the effects of irradiation on the optical properties of silica glass fibers,” Trans. Amer. Nucl. Soc., vol. 104, no. 1, pp. 33–34, 2011.

Grekov, M. V.

A. L. Tomashuk, M. V. Grekov, S. A. Vasiliev, and V. V. Svetukhin, “Fiber-optic dosimeter based on radiation-induced attenuation in P-doped fiber: Suppression of post-irradiation fading by using two working wavelengths in visible range,” Opt. Exp., vol. 22, no. 14, pp. 16778–16783, 2014.

Griscom, D. L.

E. J. Friebele, D. L. Griscom, and G. H. Sigel, “Defect centers in a germanium-doped silica core optical fiber,” J. Appl. Phys., vol. 45, no. 8, pp. 3424–3428, 1974.

Grobnic, D.

H. Henschel, D. Grobnic, S. K. Hoeffgen, J. Kuhnhenn, S. J. Mihailov, and U. Weinand, “Development of highly radiation resistant fiber Bragg gratings,” IEEE Trans. Nucl. Sci., vol. 58, no. 4, pp. 2103–2110, 2011.

Gulati, S. T.

M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength measurement of optical fibers by bending,” J. Am. Ceram. Soc., vol. 69, no. 11, pp. 815–821, 1986.

Gusarov, A.

F. Berghmans and A. Gusarov, “Fiber Bragg grating sensors in space and nuclear environments,” in Fiber Bragg Gratings Sensors: Thirty Years from Research to Market, A. Cusano, A. Cutolo, and J. Albert, Eds. Sharjah, United Arab Emirates: Bentham Science, 2011, pp. 218–237.

Gusarov, A. I.

A. I. Gusarov and S. K. Hoeffgen, “Radiation effects of fiber gratings,” IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 2037–2053, 2013.

Hartog, A.

G. Bolognini and A. Hartog, “Raman-based fibre sensors: Trends and applications,” Opt. Fiber Technol., vol. 19, no. 6, pp. 678–688, 2013.

Henschel, H.

H. Henschel, D. Grobnic, S. K. Hoeffgen, J. Kuhnhenn, S. J. Mihailov, and U. Weinand, “Development of highly radiation resistant fiber Bragg gratings,” IEEE Trans. Nucl. Sci., vol. 58, no. 4, pp. 2103–2110, 2011.

K. Krebber, H. Henschel, and U. Weinand, “Fibre Bragg gratings as high dose radiation sensors?” Meas. Sci. Technol., vol. 17, no. 5, pp. 1095–1102, 2006.

H. Henschel, O. Köhn, and H. U. Schmidt, “Optical fibres as radiation dosimeters,” Nucl. Instrum. Methods Phys. Res. B, vol. 69, no. 2/3, pp. 307–314, 1992.

H. Henschel, S. K. Hoeffgen, K. Krebber, J. Kuhnhenn, and U. Weinand, “Influence of fiber composition and grating fabrication on the radiation sensitivity of fiber Bragg gratings,” in Proc. IEEE, 9th Eur. Conf. Radiat. Effects Compon. Syst., 2007, pp. 1–8.

Hoeffgen, S. K.

A. I. Gusarov and S. K. Hoeffgen, “Radiation effects of fiber gratings,” IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 2037–2053, 2013.

H. Henschel, D. Grobnic, S. K. Hoeffgen, J. Kuhnhenn, S. J. Mihailov, and U. Weinand, “Development of highly radiation resistant fiber Bragg gratings,” IEEE Trans. Nucl. Sci., vol. 58, no. 4, pp. 2103–2110, 2011.

H. Henschel, S. K. Hoeffgen, K. Krebber, J. Kuhnhenn, and U. Weinand, “Influence of fiber composition and grating fabrication on the radiation sensitivity of fiber Bragg gratings,” in Proc. IEEE, 9th Eur. Conf. Radiat. Effects Compon. Syst., 2007, pp. 1–8.

Hokansson, A. S.

A. A. Stolov, B. E. Slyman, D. T. Burgess, A. S. Hokansson, J. Li, and R. S. Allen, “Effects of sterilization methods on key properties of specialty optical fibers used in medical devices,” Proc. SPIE Opt. Fibers Sensors for Med. Diagnostics Treat. Appl. XIII, 857606, 2013, vol. 8576.

Horiguchi, T.

Huston, A. L.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B, vol. 184, no. 1-2, pp. 55–67, 2001.

Jensen, S. M.

Justus, B. L.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B, vol. 184, no. 1-2, pp. 55–67, 2001.

Kang, M. S.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial raman oscillators,” Nat. Phys., vol. 5, pp. 276–280, 2009.

Kondo, A.

Y. Sanada, T. Sugita, Y. Nishizawa, A. Kondo, and Torii T, “The aerial radiation monitoring in japan after the fukushima daiichi nuclear power plant accident,” Prog. Nucl. Sci. Technol., vol. 4, no. 7, pp. 76–80, 2014.

Krebber, K.

K. Krebber, H. Henschel, and U. Weinand, “Fibre Bragg gratings as high dose radiation sensors?” Meas. Sci. Technol., vol. 17, no. 5, pp. 1095–1102, 2006.

H. Henschel, S. K. Hoeffgen, K. Krebber, J. Kuhnhenn, and U. Weinand, “Influence of fiber composition and grating fabrication on the radiation sensitivity of fiber Bragg gratings,” in Proc. IEEE, 9th Eur. Conf. Radiat. Effects Compon. Syst., 2007, pp. 1–8.

Kuhnhenn, J.

H. Henschel, D. Grobnic, S. K. Hoeffgen, J. Kuhnhenn, S. J. Mihailov, and U. Weinand, “Development of highly radiation resistant fiber Bragg gratings,” IEEE Trans. Nucl. Sci., vol. 58, no. 4, pp. 2103–2110, 2011.

H. Henschel, S. K. Hoeffgen, K. Krebber, J. Kuhnhenn, and U. Weinand, “Influence of fiber composition and grating fabrication on the radiation sensitivity of fiber Bragg gratings,” in Proc. IEEE, 9th Eur. Conf. Radiat. Effects Compon. Syst., 2007, pp. 1–8.

Kurashima, T.

Kurkjian, C. R.

M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength measurement of optical fibers by bending,” J. Am. Ceram. Soc., vol. 69, no. 11, pp. 815–821, 1986.

Kuyt, G.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp. 1115–1119, 2007.

Köhn, O.

H. Henschel, O. Köhn, and H. U. Schmidt, “Optical fibres as radiation dosimeters,” Nucl. Instrum. Methods Phys. Res. B, vol. 69, no. 2/3, pp. 307–314, 1992.

Landolt, M.

A. Piccolo, S. Delepine-Lesoille, M. Landolt, S. Girard, Y. Ouerdane, and C. Sabatier, “Coupled temperature and γ-radiation effect on silica-based optical fiber strain sensors based on rayleigh and Brillouin scatterings,” Opt. Exp., vol. 27, no. 15, pp. 21608–21621, 2019.

Levenson, M. D.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B, vol. 31, no. 8, pp. 5244–5252, 1985.

Lewis, E.

D. Sporea, A. Sporea, S. O'Keeffe, D. McCarthy, and E. Lewis, “Optical fibers and optical fiber sensors used in radiation monitoring,” in Selected Topics on Optical Fiber Technology, M. Yasin, S. W. Harun, and H. Arof, Eds., London, UK: Intech Open, 2012.

Li, J.

A. A. Stolov, B. E. Slyman, D. T. Burgess, A. S. Hokansson, J. Li, and R. S. Allen, “Effects of sterilization methods on key properties of specialty optical fibers used in medical devices,” Proc. SPIE Opt. Fibers Sensors for Med. Diagnostics Treat. Appl. XIII, 857606, 2013, vol. 8576.

Li, W.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-Range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J., vol. 6, no. 3, pp. 1–8, 2014.

Li, Z.

London, Y.

H. Diamandi, Y. London, G. Bashan, K. Shemer, and A. Zadok, “Forward stimulated Brillouin scattering analysis of optical fibers coatings,” J. Lightw. Technol., vol. 39, no. 6, pp. 1800–1807, 2021.

H. H. Diamandi, Y. London, G. Bashan, and A. Zadok, “Distributed opto-mechanical analysis of liquids outside standard fibers coated with polyimide,” Appl. Phys. Lett.Photon., vol. 4, no. 1, 2019. Art. no. .

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Optomechanical time-domain reflectometry,” Nature Commun., vol. 9, 2018. Art. no. .

Y. Antman, A. Clain, Y. London, and A. Zadok, “Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering,” Optica, vol. 3, no. 5, pp. 510–516, 2016.

Long, H.

G. Cheymol, H. Long, J. F. Villard, and B. Brichard, “High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2252–2258, 2008.

Lu, P.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-Range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J., vol. 6, no. 3, pp. 1–8, 2014.

Martin-Lopez, S.

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Exp., vol. 24, no. 12, pp. 13121–13133, 2016.

Martins, H. F.

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Exp., vol. 24, no. 12, pp. 13121–13133, 2016.

Matthewson, M. J.

M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength measurement of optical fibers by bending,” J. Am. Ceram. Soc., vol. 69, no. 11, pp. 815–821, 1986.

McCarthy, D.

D. Sporea, A. Sporea, S. O'Keeffe, D. McCarthy, and E. Lewis, “Optical fibers and optical fiber sensors used in radiation monitoring,” in Selected Topics on Optical Fiber Technology, M. Yasin, S. W. Harun, and H. Arof, Eds., London, UK: Intech Open, 2012.

Mihailov, S. J.

H. Henschel, D. Grobnic, S. K. Hoeffgen, J. Kuhnhenn, S. J. Mihailov, and U. Weinand, “Development of highly radiation resistant fiber Bragg gratings,” IEEE Trans. Nucl. Sci., vol. 58, no. 4, pp. 2103–2110, 2011.

Miller, R. W.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B, vol. 184, no. 1-2, pp. 55–67, 2001.

Morana, A.

A. Morana, “Steady-state radiation-induced effects on the performances of BOTDA and BOTDR optical fiber sensors,” IEEE Trans. Nucl. Sci., vol. 65, no. 1, pp. 111–118, 2018.

A. Morana, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett., vol. 39, no. 18, pp. 5313–5316, 2014.

Mélin, G.

G. Mélin, “Radiation resistant single-mode fiber with different coatings for sensing in high dose environments,” IEEE Trans. Nucl. Sci., vol. 66, no. 7, pp. 1657–1662, 2019.

Nahum, A. E.

P. Andreo, D. T. Burns, A. E. Nahum, J. Seuntjens, and F. H. Attix, Fundamentals of Ionizing Radiation Dosimetry. Weinheim, Germany: Wiley, 2017.

Nazarkin, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial raman oscillators,” Nat. Phys., vol. 5, pp. 276–280, 2009.

Niay, P.

P. Niay, “Behaviour of Bragg gratings, written in germanosilicate fibers, against γ-ray exposure at low dose rate,” IEEE Photon. Technol. Lett., vol. 6, no. 11, pp. 1350–1352, 1994.

Niklès, M.

Ning, H.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B, vol. 184, no. 1-2, pp. 55–67, 2001.

Nishizawa, Y.

Y. Sanada, T. Sugita, Y. Nishizawa, A. Kondo, and Torii T, “The aerial radiation monitoring in japan after the fukushima daiichi nuclear power plant accident,” Prog. Nucl. Sci. Technol., vol. 4, no. 7, pp. 76–80, 2014.

O'Keeffe, S.

D. Sporea, A. Sporea, S. O'Keeffe, D. McCarthy, and E. Lewis, “Optical fibers and optical fiber sensors used in radiation monitoring,” in Selected Topics on Optical Fiber Technology, M. Yasin, S. W. Harun, and H. Arof, Eds., London, UK: Intech Open, 2012.

Ouerdane, Y.

A. Piccolo, S. Delepine-Lesoille, M. Landolt, S. Girard, Y. Ouerdane, and C. Sabatier, “Coupled temperature and γ-radiation effect on silica-based optical fiber strain sensors based on rayleigh and Brillouin scatterings,” Opt. Exp., vol. 27, no. 15, pp. 21608–21621, 2019.

Pang, C.

Pastor-Graells, J.

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Exp., vol. 24, no. 12, pp. 13121–13133, 2016.

Pelillo, E.

B. J. Briscoe, L. Fiori, and E. Pelillo, “Nano-indentation of polymeric surfaces,” J. Phys. D: Appl. Phys., vol. 31, pp. 2395–2405, 1998.

Phéron, X.

X. Phéron, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Exp., vol. 20, no. 24, pp. 26978–26985, 2012.

Piccolo, A.

A. Piccolo, S. Delepine-Lesoille, M. Landolt, S. Girard, Y. Ouerdane, and C. Sabatier, “Coupled temperature and γ-radiation effect on silica-based optical fiber strain sensors based on rayleigh and Brillouin scatterings,” Opt. Exp., vol. 27, no. 15, pp. 21608–21621, 2019.

Preter, E.

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Optomechanical time-domain reflectometry,” Nature Commun., vol. 9, 2018. Art. no. .

Primak, W.

W. Primak, “Fast-neutron-induced changes in quartz and vitreous silica,” Phys. Rev. B, vol. 110, no. 6, pp. 1240–1254, 1958.

Regnier, E.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp. 1115–1119, 2007.

Reyngold, N. E.

D. A. Simoff, A. A. Stolov, H. Wu, N. E. Reyngold, and X. Sun, “Evolution of fluoropolymer clad fibers,” in Proc. 66th Int. Wire Cable Symp., 2017, pp. 29–38.

Rizzolo, S.

S. Rizzolo, “Evaluation of distributed OFDR-based sensing performance in mixed neutron/gamma radiation environments,” IEEE Trans. Nucl. Sci., vol. 64, no. 1, pp. 61–67, 2017.

S. Rizzolo, “Investigation of coating impact on OFDR optical remote fiber-based sensors performances for their integration in high temperature and radiation environments,” J. Lightw. Technol., vol. 34, no. 19, pp. 4460–4465, 2016.

S. Rizzolo, “Radiation characterization of optical frequency domain reflectometry fiber-based distributed sensors,” IEEE Trans. Nucl. Sci., vol. 63, no. 3, pp. 1688–1693, 2016.

S. Rizzolo, “Radiation hardened optical frequency domain reflectometry distributed temperature fiber-based sensors,” IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 2988–2994, 2015.

Robert, P. A.

Russell, P. St. J.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial raman oscillators,” Nat. Phys., vol. 5, pp. 276–280, 2009.

Rzepiejewska-Malyska, K. A.

K. A. Rzepiejewska-Malyska, “In situ mechanical observations during nanoindentation inside a high-resolution scanning electron microscope,” J. Mater. Res., vol. 23, no. 7, pp. 1973–1979, 2008.

Sabatier, C.

A. Piccolo, S. Delepine-Lesoille, M. Landolt, S. Girard, Y. Ouerdane, and C. Sabatier, “Coupled temperature and γ-radiation effect on silica-based optical fiber strain sensors based on rayleigh and Brillouin scatterings,” Opt. Exp., vol. 27, no. 15, pp. 21608–21621, 2019.

Sanada, Y.

Y. Sanada, T. Sugita, Y. Nishizawa, A. Kondo, and Torii T, “The aerial radiation monitoring in japan after the fukushima daiichi nuclear power plant accident,” Prog. Nucl. Sci. Technol., vol. 4, no. 7, pp. 76–80, 2014.

Schmidt, H. U.

H. Henschel, O. Köhn, and H. U. Schmidt, “Optical fibres as radiation dosimeters,” Nucl. Instrum. Methods Phys. Res. B, vol. 69, no. 2/3, pp. 307–314, 1992.

Seuntjens, J.

P. Andreo, D. T. Burns, A. E. Nahum, J. Seuntjens, and F. H. Attix, Fundamentals of Ionizing Radiation Dosimetry. Weinheim, Germany: Wiley, 2017.

Shelby, R. M.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B, vol. 31, no. 8, pp. 5244–5252, 1985.

Shemer, K.

H. Diamandi, Y. London, G. Bashan, K. Shemer, and A. Zadok, “Forward stimulated Brillouin scattering analysis of optical fibers coatings,” J. Lightw. Technol., vol. 39, no. 6, pp. 1800–1807, 2021.

Sigel, G. H.

E. J. Friebele, D. L. Griscom, and G. H. Sigel, “Defect centers in a germanium-doped silica core optical fiber,” J. Appl. Phys., vol. 45, no. 8, pp. 3424–3428, 1974.

Simoff, D. A.

D. A. Simoff, A. A. Stolov, H. Wu, N. E. Reyngold, and X. Sun, “Evolution of fluoropolymer clad fibers,” in Proc. 66th Int. Wire Cable Symp., 2017, pp. 29–38.

A. A. Stolov and D. A. Simoff, “Infrared ATR and reflection micro-spectroscopy as in-situ characterization techniques for optical fibers and their coatings,” in Infrared Spectroscopy. Theory, Development and Applications. New York NY, USA: Nova Science Publishers, 2014, pp. 403–468.

Slyman, B. E.

A. A. Stolov, B. E. Slyman, D. T. Burgess, A. S. Hokansson, J. Li, and R. S. Allen, “Effects of sterilization methods on key properties of specialty optical fibers used in medical devices,” Proc. SPIE Opt. Fibers Sensors for Med. Diagnostics Treat. Appl. XIII, 857606, 2013, vol. 8576.

Song, J.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-Range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J., vol. 6, no. 3, pp. 1–8, 2014.

Soto, M. A.

D. Chow, Z. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nature Commun, vol. 9, 2018. Art. no. .

Sporea, A.

D. Sporea, A. Sporea, S. O'Keeffe, D. McCarthy, and E. Lewis, “Optical fibers and optical fiber sensors used in radiation monitoring,” in Selected Topics on Optical Fiber Technology, M. Yasin, S. W. Harun, and H. Arof, Eds., London, UK: Intech Open, 2012.

Sporea, D.

D. Sporea, A. Sporea, S. O'Keeffe, D. McCarthy, and E. Lewis, “Optical fibers and optical fiber sensors used in radiation monitoring,” in Selected Topics on Optical Fiber Technology, M. Yasin, S. W. Harun, and H. Arof, Eds., London, UK: Intech Open, 2012.

Stolov, A. A.

A. A. Stolov, B. E. Slyman, D. T. Burgess, A. S. Hokansson, J. Li, and R. S. Allen, “Effects of sterilization methods on key properties of specialty optical fibers used in medical devices,” Proc. SPIE Opt. Fibers Sensors for Med. Diagnostics Treat. Appl. XIII, 857606, 2013, vol. 8576.

A. A. Stolov, “Effects of sterilization on optical and mechanical reliability of specialty optical fibers and terminations,” Proc. SPIE Opt. Fibers Sensors for Med. Diagnostics Treat. Appl. XIV, 893806, 2014, vol. 8938.

D. A. Simoff, A. A. Stolov, H. Wu, N. E. Reyngold, and X. Sun, “Evolution of fluoropolymer clad fibers,” in Proc. 66th Int. Wire Cable Symp., 2017, pp. 29–38.

A. A. Stolov and D. A. Simoff, “Infrared ATR and reflection micro-spectroscopy as in-situ characterization techniques for optical fibers and their coatings,” in Infrared Spectroscopy. Theory, Development and Applications. New York NY, USA: Nova Science Publishers, 2014, pp. 403–468.

Sugita, T.

Y. Sanada, T. Sugita, Y. Nishizawa, A. Kondo, and Torii T, “The aerial radiation monitoring in japan after the fukushima daiichi nuclear power plant accident,” Prog. Nucl. Sci. Technol., vol. 4, no. 7, pp. 76–80, 2014.

Sun, X.

D. A. Simoff, A. A. Stolov, H. Wu, N. E. Reyngold, and X. Sun, “Evolution of fluoropolymer clad fibers,” in Proc. 66th Int. Wire Cable Symp., 2017, pp. 29–38.

Svetukhin, V. V.

A. L. Tomashuk, M. V. Grekov, S. A. Vasiliev, and V. V. Svetukhin, “Fiber-optic dosimeter based on radiation-induced attenuation in P-doped fiber: Suppression of post-irradiation fading by using two working wavelengths in visible range,” Opt. Exp., vol. 22, no. 14, pp. 16778–16783, 2014.

T, Torii

Y. Sanada, T. Sugita, Y. Nishizawa, A. Kondo, and Torii T, “The aerial radiation monitoring in japan after the fukushima daiichi nuclear power plant accident,” Prog. Nucl. Sci. Technol., vol. 4, no. 7, pp. 76–80, 2014.

Tateda, M.

Thévenaz, L.

S. Zaslawski, Z. Yang, and L. Thévenaz, “Distributed optomechanical fiber sensing based on serrodyne analysis,” Optica, vol. 8, no. 3, pp. 388–395, 2021.

D. Chow, Z. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nature Commun, vol. 9, 2018. Art. no. .

D. M. Chow and L. Thévenaz, “Forward Brillouin scattering acoustic impedance sensor using thin polyimide-coated fiber,” Opt. Lett., vol. 43, no. 21, pp. 5467–5470, 2018.

D. Alasia, A. Fernandez Fernandez, L. Abrardi, B. Brichard, and L. Thévenaz, “The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres,” Meas. Sci. Technol., vol. 17, no. 5, pp. 1091–1094, 2006.

M. Niklès, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett., vol. 21, no. 10, pp. 758–760, 1996.

Toccafondo, I.

I. Toccafondo, “Distributed optical fiber radiation sensing in a mixed-field radiation environment at CERN,” J. Lightw. Technol., vol. 35, no. 16, pp. 3303–3310, 2017.

Tomashuk, A. L.

A. L. Tomashuk, M. V. Grekov, S. A. Vasiliev, and V. V. Svetukhin, “Fiber-optic dosimeter based on radiation-induced attenuation in P-doped fiber: Suppression of post-irradiation fading by using two working wavelengths in visible range,” Opt. Exp., vol. 22, no. 14, pp. 16778–16783, 2014.

Vasiliev, S. A.

A. L. Tomashuk, M. V. Grekov, S. A. Vasiliev, and V. V. Svetukhin, “Fiber-optic dosimeter based on radiation-induced attenuation in P-doped fiber: Suppression of post-irradiation fading by using two working wavelengths in visible range,” Opt. Exp., vol. 22, no. 14, pp. 16778–16783, 2014.

Vecchi, G. L.

G. L. Vecchi, “Infrared radiation induced attenuation of radiation sensitive optical fibers: Influence of temperature and modal propagation,” Opt. Fiber Technol., vol. 55, 2020, Art. no. .

Villard, J. F.

G. Cheymol, H. Long, J. F. Villard, and B. Brichard, “High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2252–2258, 2008.

Wang, H.

Wang, L.

Weinand, U.

H. Henschel, D. Grobnic, S. K. Hoeffgen, J. Kuhnhenn, S. J. Mihailov, and U. Weinand, “Development of highly radiation resistant fiber Bragg gratings,” IEEE Trans. Nucl. Sci., vol. 58, no. 4, pp. 2103–2110, 2011.

K. Krebber, H. Henschel, and U. Weinand, “Fibre Bragg gratings as high dose radiation sensors?” Meas. Sci. Technol., vol. 17, no. 5, pp. 1095–1102, 2006.

H. Henschel, S. K. Hoeffgen, K. Krebber, J. Kuhnhenn, and U. Weinand, “Influence of fiber composition and grating fabrication on the radiation sensitivity of fiber Bragg gratings,” in Proc. IEEE, 9th Eur. Conf. Radiat. Effects Compon. Syst., 2007, pp. 1–8.

Windl, W.

M. Govindarajan and W. Windl, “Atomic-scale modeling of the effects of irradiation on the optical properties of silica glass fibers,” Trans. Amer. Nucl. Soc., vol. 104, no. 1, pp. 33–34, 2011.

Wu, H.

D. A. Simoff, A. A. Stolov, H. Wu, N. E. Reyngold, and X. Sun, “Evolution of fluoropolymer clad fibers,” in Proc. 66th Int. Wire Cable Symp., 2017, pp. 29–38.

Xu, Y.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-Range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J., vol. 6, no. 3, pp. 1–8, 2014.

Yang, Z.

S. Zaslawski, Z. Yang, and L. Thévenaz, “Distributed optomechanical fiber sensing based on serrodyne analysis,” Optica, vol. 8, no. 3, pp. 388–395, 2021.

D. Chow, Z. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nature Commun, vol. 9, 2018. Art. no. .

Zadok, A.

H. Diamandi, Y. London, G. Bashan, K. Shemer, and A. Zadok, “Forward stimulated Brillouin scattering analysis of optical fibers coatings,” J. Lightw. Technol., vol. 39, no. 6, pp. 1800–1807, 2021.

H. H. Diamandi, Y. London, G. Bashan, and A. Zadok, “Distributed opto-mechanical analysis of liquids outside standard fibers coated with polyimide,” Appl. Phys. Lett.Photon., vol. 4, no. 1, 2019. Art. no. .

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Optomechanical time-domain reflectometry,” Nature Commun., vol. 9, 2018. Art. no. .

Y. Antman, A. Clain, Y. London, and A. Zadok, “Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering,” Optica, vol. 3, no. 5, pp. 510–516, 2016.

Zaslawski, S.

Zheng, Z.

Appl. Opt. (1)

Appl. Phys. Lett.Photon. (1)

H. H. Diamandi, Y. London, G. Bashan, and A. Zadok, “Distributed opto-mechanical analysis of liquids outside standard fibers coated with polyimide,” Appl. Phys. Lett.Photon., vol. 4, no. 1, 2019. Art. no. .

IEEE Photon. J. (1)

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-Range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J., vol. 6, no. 3, pp. 1–8, 2014.

IEEE Photon. Technol. Lett. (1)

P. Niay, “Behaviour of Bragg gratings, written in germanosilicate fibers, against γ-ray exposure at low dose rate,” IEEE Photon. Technol. Lett., vol. 6, no. 11, pp. 1350–1352, 1994.

IEEE Trans. Nucl. Sci. (13)

G. Cheymol, H. Long, J. F. Villard, and B. Brichard, “High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2252–2258, 2008.

S. Girard, “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 2015–2036, 2013.

A. Faustov, “Highly radiation sensitive type IA FBGs for future dosimetry applications,” IEEE Trans. Nucl. Sci., vol. 59, no. 4, pp. 1180–1185, 2012.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp. 1115–1119, 2007.

S. Girard, “Radiation effects on silica-based preforms and optical fibers - I: Experimental study with canonical samples,” IEEE Trans. Nucl. Sci., vol. 55, no. 6, pp. 3473–3482, 2008.

A. V. Faustov, “Comparison of gamma-radiation induced attenuation in al-doped, P-Doped and ge-doped fibres for dosimetry,” IEEE Trans. Nucl. Sci., vol. 60, no. 4, pp. 2511–2517, 2013.

A. I. Gusarov and S. K. Hoeffgen, “Radiation effects of fiber gratings,” IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 2037–2053, 2013.

H. Henschel, D. Grobnic, S. K. Hoeffgen, J. Kuhnhenn, S. J. Mihailov, and U. Weinand, “Development of highly radiation resistant fiber Bragg gratings,” IEEE Trans. Nucl. Sci., vol. 58, no. 4, pp. 2103–2110, 2011.

A. Morana, “Steady-state radiation-induced effects on the performances of BOTDA and BOTDR optical fiber sensors,” IEEE Trans. Nucl. Sci., vol. 65, no. 1, pp. 111–118, 2018.

S. Rizzolo, “Radiation hardened optical frequency domain reflectometry distributed temperature fiber-based sensors,” IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 2988–2994, 2015.

S. Rizzolo, “Radiation characterization of optical frequency domain reflectometry fiber-based distributed sensors,” IEEE Trans. Nucl. Sci., vol. 63, no. 3, pp. 1688–1693, 2016.

S. Rizzolo, “Evaluation of distributed OFDR-based sensing performance in mixed neutron/gamma radiation environments,” IEEE Trans. Nucl. Sci., vol. 64, no. 1, pp. 61–67, 2017.

G. Mélin, “Radiation resistant single-mode fiber with different coatings for sensing in high dose environments,” IEEE Trans. Nucl. Sci., vol. 66, no. 7, pp. 1657–1662, 2019.

J. Am. Ceram. Soc. (1)

M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength measurement of optical fibers by bending,” J. Am. Ceram. Soc., vol. 69, no. 11, pp. 815–821, 1986.

J. Appl. Phys. (1)

E. J. Friebele, D. L. Griscom, and G. H. Sigel, “Defect centers in a germanium-doped silica core optical fiber,” J. Appl. Phys., vol. 45, no. 8, pp. 3424–3428, 1974.

J. Lightw. Technol. (4)

I. Toccafondo, “Distributed optical fiber radiation sensing in a mixed-field radiation environment at CERN,” J. Lightw. Technol., vol. 35, no. 16, pp. 3303–3310, 2017.

D. Di Francesca, “Qualification and calibration of single-mode phosphosilicate optical fiber for dosimetry at CERN,” J. Lightw. Technol., vol. 37, no. 18, pp. 4643–4649, 2019.

S. Rizzolo, “Investigation of coating impact on OFDR optical remote fiber-based sensors performances for their integration in high temperature and radiation environments,” J. Lightw. Technol., vol. 34, no. 19, pp. 4460–4465, 2016.

H. Diamandi, Y. London, G. Bashan, K. Shemer, and A. Zadok, “Forward stimulated Brillouin scattering analysis of optical fibers coatings,” J. Lightw. Technol., vol. 39, no. 6, pp. 1800–1807, 2021.

J. Mater. Res. (1)

K. A. Rzepiejewska-Malyska, “In situ mechanical observations during nanoindentation inside a high-resolution scanning electron microscope,” J. Mater. Res., vol. 23, no. 7, pp. 1973–1979, 2008.

J. Opt. (1)

S. Girard, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt., vol. 20, no. 9, 2018, Art. no. .

J. Phys. D: Appl. Phys. (1)

B. J. Briscoe, L. Fiori, and E. Pelillo, “Nano-indentation of polymeric surfaces,” J. Phys. D: Appl. Phys., vol. 31, pp. 2395–2405, 1998.

Meas. Sci. Technol. (2)

K. Krebber, H. Henschel, and U. Weinand, “Fibre Bragg gratings as high dose radiation sensors?” Meas. Sci. Technol., vol. 17, no. 5, pp. 1095–1102, 2006.

D. Alasia, A. Fernandez Fernandez, L. Abrardi, B. Brichard, and L. Thévenaz, “The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres,” Meas. Sci. Technol., vol. 17, no. 5, pp. 1091–1094, 2006.

Nat. Phys. (1)

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial raman oscillators,” Nat. Phys., vol. 5, pp. 276–280, 2009.

Nature Commun (1)

D. Chow, Z. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nature Commun, vol. 9, 2018. Art. no. .

Nature Commun. (1)

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Optomechanical time-domain reflectometry,” Nature Commun., vol. 9, 2018. Art. no. .

Nucl. Instrum. Methods Phys. Res. B (2)

H. Henschel, O. Köhn, and H. U. Schmidt, “Optical fibres as radiation dosimeters,” Nucl. Instrum. Methods Phys. Res. B, vol. 69, no. 2/3, pp. 307–314, 1992.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B, vol. 184, no. 1-2, pp. 55–67, 2001.

Opt. Exp. (4)

A. L. Tomashuk, M. V. Grekov, S. A. Vasiliev, and V. V. Svetukhin, “Fiber-optic dosimeter based on radiation-induced attenuation in P-doped fiber: Suppression of post-irradiation fading by using two working wavelengths in visible range,” Opt. Exp., vol. 22, no. 14, pp. 16778–16783, 2014.

X. Phéron, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Exp., vol. 20, no. 24, pp. 26978–26985, 2012.

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Exp., vol. 24, no. 12, pp. 13121–13133, 2016.

A. Piccolo, S. Delepine-Lesoille, M. Landolt, S. Girard, Y. Ouerdane, and C. Sabatier, “Coupled temperature and γ-radiation effect on silica-based optical fiber strain sensors based on rayleigh and Brillouin scatterings,” Opt. Exp., vol. 27, no. 15, pp. 21608–21621, 2019.

Opt. Fiber Technol. (2)

G. L. Vecchi, “Infrared radiation induced attenuation of radiation sensitive optical fibers: Influence of temperature and modal propagation,” Opt. Fiber Technol., vol. 55, 2020, Art. no. .

G. Bolognini and A. Hartog, “Raman-based fibre sensors: Trends and applications,” Opt. Fiber Technol., vol. 19, no. 6, pp. 678–688, 2013.

Opt. Lett. (5)

Optica (3)

Phys. Rev. B (2)

W. Primak, “Fast-neutron-induced changes in quartz and vitreous silica,” Phys. Rev. B, vol. 110, no. 6, pp. 1240–1254, 1958.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B, vol. 31, no. 8, pp. 5244–5252, 1985.

Prog. Nucl. Sci. Technol. (1)

Y. Sanada, T. Sugita, Y. Nishizawa, A. Kondo, and Torii T, “The aerial radiation monitoring in japan after the fukushima daiichi nuclear power plant accident,” Prog. Nucl. Sci. Technol., vol. 4, no. 7, pp. 76–80, 2014.

Rev. Phys. (1)

S. Girard, “Overview of radiation induced point defects in silica-based optical fibers,” Rev. Phys., vol. 4, 2019, Art. no. 032.

Trans. Amer. Nucl. Soc. (1)

M. Govindarajan and W. Windl, “Atomic-scale modeling of the effects of irradiation on the optical properties of silica glass fibers,” Trans. Amer. Nucl. Soc., vol. 104, no. 1, pp. 33–34, 2011.

Other (12)

K. R. Kase, Ed. The Dosimetry of Ionizing Radiation. Orlando FL, USA: Academic Press, 1985.

P. Andreo, D. T. Burns, A. E. Nahum, J. Seuntjens, and F. H. Attix, Fundamentals of Ionizing Radiation Dosimetry. Weinheim, Germany: Wiley, 2017.

E. Udd and W. B. Spillman, Eds. Fiber Optic Sensors: An Introduction For Engineers and Scientists, 2nd ed., Hoboken NJ, USA: Wiley, 2011.

K. T. V. Grattan and B. T. Meggit, Eds. Optical Fiber Sensor Technology Volume 4, Chemical and Environmental Sensing. Dordrecht, the Netherlands: Kluwer Academic Publishers, 2010.

F. Berghmans and A. Gusarov, “Fiber Bragg grating sensors in space and nuclear environments,” in Fiber Bragg Gratings Sensors: Thirty Years from Research to Market, A. Cusano, A. Cutolo, and J. Albert, Eds. Sharjah, United Arab Emirates: Bentham Science, 2011, pp. 218–237.

D. Sporea, A. Sporea, S. O'Keeffe, D. McCarthy, and E. Lewis, “Optical fibers and optical fiber sensors used in radiation monitoring,” in Selected Topics on Optical Fiber Technology, M. Yasin, S. W. Harun, and H. Arof, Eds., London, UK: Intech Open, 2012.

H. Henschel, S. K. Hoeffgen, K. Krebber, J. Kuhnhenn, and U. Weinand, “Influence of fiber composition and grating fabrication on the radiation sensitivity of fiber Bragg gratings,” in Proc. IEEE, 9th Eur. Conf. Radiat. Effects Compon. Syst., 2007, pp. 1–8.

A. A. Stolov, B. E. Slyman, D. T. Burgess, A. S. Hokansson, J. Li, and R. S. Allen, “Effects of sterilization methods on key properties of specialty optical fibers used in medical devices,” Proc. SPIE Opt. Fibers Sensors for Med. Diagnostics Treat. Appl. XIII, 857606, 2013, vol. 8576.

A. A. Stolov, “Effects of sterilization on optical and mechanical reliability of specialty optical fibers and terminations,” Proc. SPIE Opt. Fibers Sensors for Med. Diagnostics Treat. Appl. XIV, 893806, 2014, vol. 8938.

D. A. Simoff, A. A. Stolov, H. Wu, N. E. Reyngold, and X. Sun, “Evolution of fluoropolymer clad fibers,” in Proc. 66th Int. Wire Cable Symp., 2017, pp. 29–38.

G. Berkovic, “Characterization of radiation hardened fibers in a research grade nuclear reactor,” in Proc. SPIE Micro-structured Specialty Opt. Fibres VII, 2021, vol. 11773 Art. no. .

A. A. Stolov and D. A. Simoff, “Infrared ATR and reflection micro-spectroscopy as in-situ characterization techniques for optical fibers and their coatings,” in Infrared Spectroscopy. Theory, Development and Applications. New York NY, USA: Nova Science Publishers, 2014, pp. 403–468.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved