Abstract

We present a framework for enhancing Gaussian process regression machine learning models with a priori knowledge derived from models of the transmission physics in optical networks. This is done by framing the regression problem as multi-task learning, in which both the measured data and targets derived from a physical model of the system are used to optimise the kernel hyperparameters. We discuss the theoretical assumptions made and the validity of the approach. It is demonstrated that physics-informed Gaussian processes facilitate Bayesian inference with fewer data points than standard Gaussian processes, opening up application areas in which measurements are expensive. The transparency, interpretability and explainability of the proposed technique and the subsequent increased likelihood of adoption by industry are discussed.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription