Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 24,
  • pp. 7588-7599
  • (2021)

Design and Performance Estimation of a Photonic Integrated Beamforming Receiver for Scan-on-Receive Synthetic Aperture Radar

Not Accessible

Your library or personal account may give you access

Abstract

Synthetic aperture radar is a remote sensing technology finding applications in a wide range of fields, especially related to Earth observation. It enables a fine imaging that is crucial in critical activities, like environmental monitoring for natural resource management or disasters prevention. In this picture, the scan-on-receive paradigm allows for enhanced imaging capabilities thanks to wide swath observations at finer azimuthal resolution achieved by beamforming of multiple simultaneous antenna beams. Recently, solutions based on microwave photonics techniques demonstrated the possibility of an efficient implementation of beamforming, overcoming some limitations posed by purely electronic solutions, offering unprecedented flexibility and precision to RF systems. Moreover, photonics-assisted RF beamformers can nowadays be realized as integrated circuits, with reduced size and power consumption with respect to digital beamforming approaches. This paper presents the design analysis and the challenges of the development of a hybrid photonic-integrated circuit as the core element of an X-band scan-on-receive spaceborne synthetic aperture radar. The proposed photonic-integrated circuit synthetizes three simultaneous scanning beams on the received signal, and performs the frequency down-conversion, guaranteeing a compact 15 cm2-form factor, less than 6 W power consumption, and 55 dB of dynamic range. The whole photonics-assisted system is designed for space compliance and meets the target application requirements, representing a step forward toward a deeper penetration of photonics in microwave applications for challenging scenarios, like the observation of the Earth from space.

PDF Article
More Like This
Optical design of an integrated imaging system of optical camera and synthetic aperture radar

Ruichang Li, Liangjie Feng, Kaijiang Xu, Nan Wang, and Xuewu Fan
Opt. Express 29(22) 36796-36812 (2021)

Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing

Ruoming Li, Wangzhe Li, Manlai Ding, Zhilei Wen, Yanlei Li, Liangjiang Zhou, Songshan Yu, Tonghe Xing, Bowei Gao, Yuchen Luan, Yongtao Zhu, Peng Guo, Yu Tian, and Xingdong Liang
Opt. Express 25(13) 14334-14340 (2017)

Developing an integrated photonic system with a simple beamforming architecture for phased-array antennas

Weimin Zhou, Michael Stead, Steven Weiss, Olukayode Okusaga, Lingjun Jiang, Stephen Anderson, and Z. Rena Huang
Appl. Opt. 56(3) B5-B13 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.