Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 24,
  • pp. 7609-7620
  • (2021)

Terahertz Band Communications With Topological Valley Photonic Crystal Waveguide

Open Access Open Access

Abstract

The sixth generation (6 G) communication standard is expected to include support for very-high data rates (over 100 Gbit/s) and device electronics will require processors with on-chip communications able to support such high bandwidths. Although the terahertz band possesses ample bandwidth, conventional THz waveguides suffer from high bending losses and are sensitive to process defects. The recent revelation of the topological valley photonic crystal (VPC), which exhibits near zero-loss bends, zero back-scattering and zero junction-area, holds much promise for future high speed inter-device communications. Low dispersion in the photonic bandgap region as the number of bends increase is demonstrated through simulation and experiment of the transmission and group delay characteristics. Through comprehensive communications experiments we demonstrate online results below the forward error correction level including an 108-Gbit/s bit rate using multi-level modulation for a 10 mm straight VPC waveguide and a 62.5-Gbit/s bit-rate for a ten sharp bended structure.

PDF Article
More Like This
Terahertz tunable band-stop filter using topological valley photonic crystals

Rajesh Kumar, Rohith K. M., Shashank Pandey, Sanjeev K. Srivastava, and Gagan Kumar
Appl. Opt. 63(1) 104-111 (2024)

Slow light waveguides in topological valley photonic crystals

Hironobu Yoshimi, Takuto Yamaguchi, Yasutomo Ota, Yasuhiko Arakawa, and Satoshi Iwamoto
Opt. Lett. 45(9) 2648-2651 (2020)

Terahertz topological photonic waveguide switch for on-chip communication

Xudong Liu, Jialiang Huang, Hao Chen, Zhengfang Qian, Jingwen Ma, Xiankai Sun, Shuting Fan, and Yiwen Sun
Photon. Res. 10(4) 1090-1096 (2022)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.