Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 4,
  • pp. 1162-1170
  • (2021)

Experimental Characterization of Raman Amplifier Optimization Through Inverse System Design

Not Accessible

Your library or personal account may give you access

Abstract

Optical communication systems are always evolving to support the need for ever–increasing transmission rates. This demand is supported by the growth in complexity of communication systems which are moving towards ultra–wideband transmission and space–division multiplexing. Both directions will challenge the design, modeling, and optimization of devices, subsystems, and full systems. Amplification is a key functionality to support this growth and in this context, we recently demonstrated a versatile machine learning framework for designing and modeling Raman amplifiers with arbitrary gains. In this article, we perform a thorough experimental characterization of such machine learning framework. The applicability of the proposed approach, as well as its ability to accurately provide flat and tilted gain–profiles, are tested on several practical fiber types, showing errors below 0.5 dB. Moreover, as channel power optimization is heavily employed to further enhance the transmission rate, the tolerance of the framework to variations in the input signal spectral profile is investigated. Results show that the inverse design can provide highly accurate gain–profile adjustments for different input signal power profiles even not considering this information during the training phase.

PDF Article
More Like This
Simultaneous gain profile design and noise figure prediction for Raman amplifiers using machine learning

Uiara Celine de Moura, Ann Margareth Rosa Brusin, Andrea Carena, Darko Zibar, and Francesco Da Ros
Opt. Lett. 46(5) 1157-1160 (2021)

Inverse design of a Raman amplifier in frequency and distance domains using convolutional neural networks

Mehran Soltani, Francesco Da Ros, Andrea Carena, and Darko Zibar
Opt. Lett. 46(11) 2650-2653 (2021)

Experimental validation of machine-learning based spectral-spatial power evolution shaping using Raman amplifiers

Mehran Soltani, Francesco Da Ros, Andrea Carena, and Darko Zibar
Opt. Express 30(25) 45958-45969 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.