Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 7,
  • pp. 2033-2045
  • (2021)

Multi-Dimensional, Wide-Range, and Modulation-Format-Transparent Transceiver Imbalance Monitoring

Not Accessible

Your library or personal account may give you access

Abstract

We propose and experimentally demonstrate a dual-polarization (DP) transceiver imbalance monitoring scheme, which is applicable for the coherent system using square QAM signals. The scheme can separate/monitor various kinds of transceiver imbalances and has technical advantages of multi-dimension, wide monitoring range, and modulation-format-transparency. In the proposed scheme, a polarization scrambler is configured between transmitter (Tx) and receiver (Rx). After coherent detection, the proposed digital signal processing (DSP) modules are implemented to monitor transceiver imbalance based on the received signals. To simplify the DSP modules, the implementation sequence of DSP modules is in reverse order compared to the order in which the sequence of impairments is introduced. Firstly, Godard timing error detection (TED) and Gram–Schmidt orthogonalization procedure (GSOP) is used to monitor and compensate Rx imbalances. After compensating the Rx imbalances, Tx imbalance monitoring is implemented. Complex/real maximum likelihood independent component analysis (ML-ICA) and Godard-TED are used to monitor Tx imbalance. Finally, the amplitude ratios of the final output signal and Tx in-phase/quadrature (IQ) amplitude imbalance are fed back to mitigate the interaction of Tx imbalances on the signal power and improve monitoring accuracy. The transceiver IQ and x-polarization/y-polarization (XY) imbalances are separated for the first time by using the frequency offset (FO) naturally existing in the system and the continuous polarization rotation induced by a polarization scrambler. The separation method combined with the reverse algorithm design and amplitude ratio feedback mechanism makes the proposed scheme achieve the most multi-dimensional imbalance monitoring by far. The simulation and experimental results verify that the proposed scheme is modulation-format-transparent and can separate/monitor multi-dimensional transceiver imbalances within a wide range.

PDF Article
More Like This
Modulation-format-transparent IQ imbalance estimation of dual-polarization optical transmitter based on maximum likelihood independent component analysis

Qun Zhang, Yanfu Yang, Changjian Guo, Xian Zhou, Yong Yao, Alan Pak Tao Lau, and Chao Lu
Opt. Express 27(13) 18055-18068 (2019)

Low-complexity and blind receiver in-phase/quadrature imbalances compensation and estimation in the frequency domain for high-order modulation formats

Jia Chai, Junpeng Liang, Xue Chen, Tao Yang, Jialin You, and Weiming Wang
Opt. Express 30(16) 28414-28426 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.