Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 7,
  • pp. 2230-2240
  • (2021)

Compact Dual-Strain Sensitivity Polymer Optical Fiber Grating for Multi-Parameter Sensing

Not Accessible

Your library or personal account may give you access

Abstract

In this article, two configurations are presented for simultaneous measurement of strain and temperature by reducing the cross-section area in small regions of the fiber where the Bragg gratings were inscribed, to achieve dual sensitivity to strain and handle the cross-sensitivity to temperature of a single grating. Each configuration used a single Bragg grating inscribed in a 2-ring undoped poly (methyl methacrylate) microstructured polymer optical fiber (mPOF) with a pulsed Q-switched Nd:YAG laser system. To reduce the cross-section area, a femtosecond laser system was used to remove portions of the mPOF, creating micromachined slots in the fiber, with different lengths for each configuration. The result was the appearance of a second peak when strain is applied, with a higher strain sensitivity. The thermal, humidity and refractive index response of these gratings were analyzed, revealing a thermal sensitivity almost twice the value of a common Bragg grating inscribed in the same mPOF. The maximum root mean square errors obtained when both strain and temperature are applied in these grating devices were 52 με and 0.6 °C, respectively. These results show that the method used to produce these devices could be a suitable and reliable option to fabricate very compact sensors to simultaneously measure strain and other parameters, such as temperature. Moreover, these devices may be used as phase-shift gratings since the position of the reflective peaks and their relative spectral separation may be modulated by applying strain to the optical fiber.

PDF Article
More Like This
High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees

Christos Markos, Alessio Stefani, Kristian Nielsen, Henrik K. Rasmussen, Wu Yuan, and Ole Bang
Opt. Express 21(4) 4758-4765 (2013)

Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors

Andrea Fasano, Getinet Woyessa, Pavol Stajanca, Christos Markos, Alessio Stefani, Kristian Nielsen, Henrik K. Rasmussen, Katerina Krebber, and Ole Bang
Opt. Mater. Express 6(2) 649-659 (2016)

Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing

Getinet Woyessa, Andrea Fasano, Christos Markos, Alessio Stefani, Henrik K. Rasmussen, and Ole Bang
Opt. Mater. Express 7(1) 286-295 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.