Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 14,
  • pp. 4871-4877
  • (2022)

Highly Sensitive Fiber Bragg Grating Sensing System Based on a Dual-Loop Optoelectronic Oscillator With the Enhanced Vernier Effect

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, a highly sensitive fiber Bragg grating (FBG) interrogation system based on a dual-loop optoelectronic oscillator (OEO) with the enhanced Vernier effect has been proposed and experimentally demonstrated. Light reflected from the FBG sensor is used as the optical source of the OEO. By introducing dispersion in the OEO loop, the sensor information encoded in the FBG wavelength can be interrogated by detecting the frequency of microwave signal generated by the OEO loop. The dispersive media in OEO has two paths, one path is formed with a roll of dispersion compensation fiber (DCF), and the other path is formed with a roll of single-mode fiber (SMF). By designing the length of two paths with slightly difference, the Vernier effect is generated in the OEO. Since the dispersion of the two paths is opposite, an enhanced Vernier effect can be realized, which can significantly enhance the sensitivity. The experimental results prove the possibility of applying the concept of enhanced Vernier effect to the OEO for temperature sensing. The sensitivity is about 0.926 kHz/°C and 0.0912 kHz/°C for a single-loop OEO with DCF and SMF, respectively. By employing the enhanced Vernier effect, the sensitivity can be improved to 141.13 kHz/°C, which is estimated about 152.4 and 1547.5 times higher than that of the two single loops, respectively. Furthermore, sensitivity can be further improved by using a dispersive link with larger dispersion.

PDF Article
More Like This
High-precision temperature-compensated fiber Bragg grating axial strain sensing system based on a dual-loop optoelectronic oscillator with the enhanced Vernier effect

Lingge Gao, Yiping Wang, Xiaozhong Tian, Yunhao Xiao, Qiang Liu, and Dan Zhu
Appl. Opt. 62(19) 5317-5324 (2023)

High-sensitivity optical fiber temperature sensor based on a dual-loop optoelectronic oscillator with the Vernier effect

Yunjie Cheng, Yiping Wang, Zixuan Song, and Jing Lei
Opt. Express 28(23) 35264-35271 (2020)

Fiber Bragg grating sensor interrogation system based on an optoelectronic oscillator loop

Zuowei Xu, Xuewen Shu, and Hongyan Fu
Opt. Express 27(16) 23274-23281 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.