Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 15,
  • pp. 4999-5012
  • (2022)

Performance and Channel Modeling Optimization for Hovering UAV-Assisted FSO Links

Not Accessible

Your library or personal account may give you access

Abstract

Unmanned Aerial Vehicle (UAV)-assisted free-space optical (FSO) communication has become a promising solution in both civil and military applications. Nevertheless, hovering UAV-assisted FSO links suffer from several losses due to atmospheric turbulence, pointing errors (PEs), angle-of-arrival (AOA) fluctuations, and link attenuation related to various weather conditions. In this paper, we optimize the theoretical channel model for hovering UAV-assisted FSO links considering all the above destructive channel factors. Our optimized theoretical channel model agrees with the Monte-Carlo simulation results much better under the full range of channel coefficients compared to previous published works. Based on our optimized theoretical channel model, theoretical expressions of the link outage probability, ergodic and outage capacity, and bit error rate are derived. The impact of various parameters, such as Rytov variance, root-mean-squares (RMS) of PEs and AOA fluctuations, angle of field-of-view, rain rate, visibility, optical beam divergence angle, and transmitted power on the above performance metrics is analytically studied and corroborated by Monte-Carlo simulations. Simulation results also show that for a given receiving aperture, transmit power, and link length, the performance of the hovering UAV-assisted FSO links can be optimized by carefully designing the ratio of optical beam divergence angle to RMS of PEs.

PDF Article
More Like This
Performance analysis of a UAV-based IRS-assisted hybrid RF/FSO link with pointing and phase shift errors

Suman Malik, Prakriti Saxena, and Yeon Ho Chung
J. Opt. Commun. Netw. 14(4) 303-315 (2022)

Intelligent-reflecting-surfaces-assisted hybrid FSO/RF communication with diversity combining: a performance analysis

Smriti Uniyal, Narendra Vishwakarma, R. Swaminathan, and A. S. Madhukumar
Appl. Opt. 62(35) 9399-9413 (2023)

Comprehensive study on UAV-based FSO links for high-speed train backhauling

Haitham S. Khallaf and Murat Uysal
Appl. Opt. 60(27) 8239-8247 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.