Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 15,
  • pp. 5216-5223
  • (2022)

Scattering-Assisted and Logic-Controllable WGM Laser in Liquid Crystal Micropillar

Not Accessible

Your library or personal account may give you access

Abstract

Whispering gallery mode (WGM) microcavities can efficiently store and manipulate light with strong light confinement and long photon lifetime, while coupling light into and from WGMs is intrinsically hindered by their unique feature of rotational symmetry. Here, a scattering-assisted liquid crystal (LC) micropillar WGM laser is proposed. WGM lasing at the surface of the micropillar is obviously enhanced by fluorescence scattering in the core of the micropillar. Besides, weak scattering of LC molecules also builds efficient coupling channels between the laser modes and the axial transmission modes of the micropillar-based waveguide, providing an all-in-one liquid WGM laser with functions of self-seeding and self-guiding. Furthermore, based on the hysteresis characteristics of the electrically anchored LC molecules under the interaction of thermal force, an erasable read-write liquid memory device is proposed, paving the way for the application of logic-controllable WGM lasers in optical storage and optical control.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.