Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 18,
  • pp. 6071-6077
  • (2022)

Enhancing the Spectral Efficiency of Nonlinear Frequency Division Multiplexing Systems via Hermite-Gaussian Subcarriers

Not Accessible

Your library or personal account may give you access

Abstract

The nonlinear frequency division multiplexing (NFDM) is a promising concept in the field of optical fiber communications. Based on a well established mathematical technique of the nonlinear Fourier transform (NFT), a data modulation scheme has been suggested, which is intrinsically immune to Kerr nonlinearity and chromatic dispersion. However, most NFDM systems still suffer from low values of spectral efficiency due to the large burst sizes and the nonlinear interaction of the signal and the inline amplifier noise. Here, we show that this problem can be partially circumvented by using the Hermite-Gaussian spectral carriers. Using this approach, we are able to report a significantly higher spectral efficiency for NFDM schemes approaching 4.5 bits/s/Hz for a single polarization while keeping the bit error rate of uncoded input below the 7% hard decision forward error correction threshold.

PDF Article
More Like This
Two-stage artificial neural network-based burst-subcarrier joint equalization in nonlinear frequency division multiplexing systems

Xinyu Chen, Hao Ming, Chenjia Li, Guangqiang He, and Fan Zhang
Opt. Lett. 46(7) 1700-1703 (2021)

Channel model and the achievable information rates of the optical nonlinear frequency division-multiplexed systems employing continuous b-modulation

Stanislav Derevyanko, Muyiwa Balogun, Ofer Aluf, Dmitry Shepelsky, and Jaroslaw E. Prilepsky
Opt. Express 29(5) 6384-6406 (2021)

Nonlinear-frequency-packing nonlinear frequency division multiplexing transmission

Xulun Zhang, Peng Sun, Lixia Xi, Zibo Zheng, Shucheng Du, Jiacheng Wei, Yue Wu, and Xiaoguang Zhang
Opt. Express 28(10) 15360-15375 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.