Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 19,
  • pp. 6359-6365
  • (2022)

PAPR Reduction in DCO-OFDM Based WDM VLC

Not Accessible

Your library or personal account may give you access

Abstract

Visible light communication (VLC) can achieve high data rate transmission with multicarrier modulation techniques. The common variant is direct current (DC) optical orthogonal frequency division multiplexing (DCO-OFDM) which offers a spectral efficient modulation solution for VLC. However, similar to other multicarrier modulation schemes, DCO-OFDM suffers from a high peak-to-average power ratio (PAPR). In this paper, the efficacy of pilot-assisted (PA) PAPR reduction system in DCO-OFDM based VLC is demonstrated experimentally. Wavelength division multiplexing (WDM) is applied using three off-the-shelf light emitting diodes (LEDs). PA DCO-OFDM is compared to the conventional DCO-OFDM based on achievable data rate and bit error rate (BER). The available modulation bandwidth of each LED is utilised by adaptive bit and power loading in both systems. The proposed system reduces the high PAPR values of the system, hence, reduces the clipping noise and minimises the nonlinearity effect of each wavelength. Thus, the PA DCO-OFDM has achieved more than 7% data rate higher than that of the conventional DCO-OFDM with no PAPR reduction.

PDF Article
More Like This
PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications

Jurong Bai, Yong Li, Yang Yi, Wei Cheng, and Huimin Du
Opt. Express 25(20) 24630-24638 (2017)

Improved TKM-TR methods for PAPR reduction of DCO-OFDM visible light communications

Yongqiang Hei, Jiao Liu, Huaxi Gu, Wentao Li, Xiaochuan Xu, and Ray T. Chen
Opt. Express 25(20) 24448-24458 (2017)

Branch and bound methods based tone injection schemes for PAPR reduction of DCO-OFDM visible light communications

Yongqiang Hei, Jiao Liu, Wentao Li, Xiaochuan Xu, and Ray T. Chen
Opt. Express 25(2) 595-604 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.