Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 2,
  • pp. 470-480
  • (2022)

Deep Reinforcement Learning-Based Policy for Baseband Function Placement and Routing of RAN in 5G and Beyond

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we propose a deep reinforcement learning (DRL)-based algorithm to generate policies of Baseband Function (BBF) placement and routing. In order to explore the performance of the proposed algorithm in practical systems, the online scenario with the completely random requests is used in the simulation considering C-RAN and NG-RAN architectures. Besides, an Integer Linear Programming (ILP) model is formulated to generate the optimal solution as the benchmark. The simulation results show that DRL-based algorithm converges in a short time, and its performance closes to the optimal benchmark obtained by ILP in terms of latency and bandwidth for the online scenarios. In addition, the performance of the generated policies based on DRL is compared with a classic heuristic algorithm, i.e., first-fit algorithm. The performance of DRL-based algorithm is superior to the first-fit algorithm from above two perspectives. The fast convergence and the near-optimal performance prove that the DRL-based algorithm is a promising approach for the BBF placement and routing of RAN in 5G and Beyond.

PDF Article
More Like This
Security-aware 5G RAN slice mapping with tiered isolation in physical-layer secured metro-aggregation elastic optical networks using heuristic-assisted DRL

Yunwu Wang, Min Zhu, Jiahua Gu, Xiang Liu, Weidong Tong, Bingchang Hua, Mingzheng Lei, Yuancheng Cai, and Jiao Zhang
J. Opt. Commun. Netw. 15(12) 969-984 (2023)

Edge-enhanced graph neural network for DU-CU placement and lightpath provision in X-Haul networks

Ruikun Wang, Jiawei Zhang, Zhiqun Gu, Shuangyi Yan, Yuming Xiao, and Yuefeng Ji
J. Opt. Commun. Netw. 14(10) 828-839 (2022)

Experimental evaluation of a latency-aware routing and spectrum assignment mechanism based on deep reinforcement learning

C. Hernández-Chulde, R. Casellas, R. Martínez, R. Vilalta, and R. Muñoz
J. Opt. Commun. Netw. 15(11) 925-937 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.