Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 4,
  • pp. 947-953
  • (2022)

Optimum Constellation Size for Probabilistically Shaped Signals in the Presence of Laser Phase Noise

Not Accessible

Your library or personal account may give you access

Abstract

Higher cardinality modulation formats are generally adopted for probabilistically shaped (PS) signals to achieve the same entropy as uniformly shaped (US) signals. As a result, despite the shaping gain, PS signals are more sensitive to the laser phase noise since the phase margin is smaller than that of US signals. In this work, we investigate the optimum constellation size for PS signals by considering the effects from both shaping gain and laser phase noise. The constellation size we consider is not restricted to values given by $2^k$ , where $k$ is an integer. The non- $2^k$ QAM can be generated by setting zero probability in outer constellation points of $2^k$ QAM. Here, we compare the performances of US-64 QAM, PS-100 QAM, PS-144 QAM, PS-196 QAM and PS-256 QAM with the same information rate under the circumstance of different laser linewidths. The carrier phase recovery (CPR) is conducted by applying a modified two-stage pilot-symbols-aided carrier phase estimator. Consequently, we also study the CPR performance of the five modulation formats with different combinations of the block size in the first stage and the window size in the second stage. In our experimental demonstration, a coherent detection based optical back-to-back system is built with 100-kHz linewidth transmitter laser and local oscillator. For homodyne detection, PS-256 QAM performs best owing to the largest shaping gain. However, PS-144 QAM becomes the optimal choice for 200-kHz sum linewidth heterodyne detection benefiting from both the shaping gain and relatively large phase margin. In addition, numerical simulation has been conducted for investigating the effects of code rate and information rate on optimizing the constellation size.

PDF Article
More Like This
Constellation size for probabilistic shaping under the constraint of limited ADC resolution

Qiulin Zhang and Chester Shu
Opt. Lett. 44(23) 5820-5823 (2019)

Carrier phase recovery friendly probabilistic shaping scheme based on a quasi-Maxwell–Boltzmann distribution model

Xishuo Wang, Qi Zhang, Jianjun Yu, Xiangjun Xin, Kai Lv, Ran Gao, Jianxin Ren, Feng Tian, Qinghua Tian, Chuxuan Wang, Xiaolong Pan, Yongjun Wang, Dong Guo, and Leijing Yang
Opt. Lett. 45(17) 4883-4886 (2020)

Maximum probability directed blind phase search for PS-QAM with variable shaping factors

Zexin Chen, Songnian Fu, Ming Tang, Zhenrong Zhang, and Yuwen Qin
Opt. Express 30(1) 550-562 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.